精英家教网 > 高中数学 > 题目详情
3.已知四棱锥S-ABCD中,底面ABCD是直角梯形,∠ABC=90°,AD∥BC,SA=AB=BC=2,AD=1,SA⊥底面ABCD.
(1)求四棱锥S-ABCD的体积;
(2)求异面直线SC与AD所成角的余弦值.

分析 (1)先求出S梯形ABCD,由此能求出四棱锥S-ABCD的体积.
(2)以A为原点,AB为x轴,AD为y轴,AS为z轴,建立空间直角坐标系,利用向量法能求出异面直线SC与AD所成角的余弦值.

解答 解:(1)∵四棱锥S-ABCD中,底面ABCD是直角梯形,
∠ABC=90°,AD∥BC,SA=AB=BC=2,AD=1,SA⊥底面ABCD,
∴S梯形ABCD=$\frac{1}{2}$(1+2)×2=3,
∴四棱锥S-ABCD的体积V=$\frac{1}{3}×{S}_{梯形ABCD}×SA$=$\frac{1}{3}×3×2$=2.
(2)以A为原点,AB为x轴,AD为y轴,AS为z轴,建立空间直角坐标系,
C(2,2,0),S(0,0,2),A(0,0,0),D(0,1,0),
$\overrightarrow{SC}$=(2,2,-2),$\overrightarrow{AD}$=(0,1,0),
设异面直线SC与AD所成角为θ,
则cosθ=$\frac{|\overrightarrow{SC}•\overrightarrow{AD}|}{|\overrightarrow{SC}|•|\overrightarrow{AD}|}$=$\frac{2}{\sqrt{12}}$=$\frac{\sqrt{3}}{3}$.
∴异面直线SC与AD所成角的余弦值为$\frac{\sqrt{3}}{3}$.

点评 本题考查四棱锥的体积的求法,考查异面直线所成角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数f(x)=(x-3)ex的单调增区间是(  )
A.(-∞,2)B.(2,+∞)C.(1,4)D.(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.一青蛙从点A0(x0,y0)开始依次水平向右和竖直向上跳动,其落点坐标依次是Ai(xi,yi)(i∈N*),(如图,A0(x0,y0)的坐标以已知条件为准),Sn表示青蛙从点A0到点An所经过的路程.
(1)点A0(x0,y0)为抛物线y2=2px(p>0)准线上一点,点A1,A2均在该抛物线上,并且直线A1A2经过该抛物线的焦点,证明S2=3p;
(2)若点An(xn,yn)(n∈N*)要么落在y=x所表示的曲线上,要么落在y=x2所表示的曲线上,并且A0($\frac{1}{2}$,$\frac{1}{2}$),试写出$\lim_{n→+∞}$Sn(不需证明);
(3)若点An(xn,yn)要么落在y=${2^{\sqrt{1+8x}-1}}$所表示的曲线上,要么落在y=${2^{\sqrt{1+8x}+1}}$所表示的曲线上,并且A0(0,4),求S2011的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=$\sqrt{3}$x+2cosx,x∈(0,π)上单调减区间为(  )
A.($\frac{π}{3}$,$\frac{2π}{3}$)B.($\frac{π}{6}$,$\frac{5π}{6}$)C.(0,$\frac{π}{3}$),($\frac{2π}{3}$,π)D.(0,$\frac{π}{6}$),($\frac{5π}{6}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx+$\frac{a}{x+1}$,a∈R
(1)当a=2时,试比较f(x)与1的大小;
(2)求证:ln(n+1)>$\frac{1}{3}$+$\frac{1}{5}$+$\frac{1}{7}$+…+$\frac{1}{2n+1}$(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点M(1,$\frac{3}{2}$),其离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)设直线l:y=kx+m(m≠0,|k|≤$\frac{1}{2}$)与椭圆C相交于A、B两点,以线段OA,OB为邻边作平行四边形OAPB,其中顶点P在椭圆C上,O为坐标原点.求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知OPQ是半径为1,圆心角为$\frac{π}{3}$的扇形,C是扇形弧上的动点,四边形ABCD是扇形的内接矩形,记∠COP=α,矩形的面积为S;
(1)求出S与α的函数关系式,并指出α的取值范围;
(2)求S最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=3(x-2)2+5,且|x1-2|>|x2-2|,则f(x1),f(x2)的大小关系是f(x1)>f(x2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,a,b,c分别为内角A,B,C的对边,且asinC=$\sqrt{3}$ccosA.
(1)求角A的大小;
(2)若a=$\sqrt{13}$,c=3,求△ABC的面积.

查看答案和解析>>

同步练习册答案