8£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¾­¹ýµãM£¨1£¬$\frac{3}{2}$£©£¬ÆäÀëÐÄÂÊΪ$\frac{1}{2}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßl£ºy=kx+m£¨m¡Ù0£¬|k|¡Ü$\frac{1}{2}$£©ÓëÍÖÔ²CÏཻÓÚA¡¢BÁ½µã£¬ÒÔÏß¶ÎOA£¬OBΪÁÚ±ß×÷ƽÐÐËıßÐÎOAPB£¬ÆäÖж¥µãPÔÚÍÖÔ²CÉÏ£¬OÎª×ø±êÔ­µã£®ÇómµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{1}{2}$£¬ÕûÀíµÃ£º3a2=4b2£¬¢ÙÔÙ½«×ø±êµãM£¨1£¬$\frac{3}{2}$£©£¬´úÈëÍÖÔ²·½³Ì¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²CµÄ·½³Ì£»
£¨2£©¶ÔkÐèÒª·Ök=0ºÍk¡Ù0Á½ÖÖÇé¿öÌÖÂÛ£®ÆäÖÐk=0ʱ£¬½ÏÒ×Çó½â£»k¡Ù0ʱ£¬ÐèÒª½«ÍÖÔ²·½³ÌºÍÖ±Ïß·½³ÌÁªÁ¢µÃµ½¹ØÓÚxµÄ¶þ´Î·½³Ì£¬ÔÚÆ½ÐÐËıßÐÎOAPBÖУ¬$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$£¬Óɴ˼´¿ÉµÃµ½ÈýµãµÄ×ø±ê¹ØÏµ£¬½«Ø­OPØ­=$\sqrt{{x}_{0}^{2}+{y}_{0}^{2}}$=$\sqrt{\frac{64{k}^{2}{m}^{2}}{£¨3+4{k}^{2}£©^{2}}+\frac{36{m}^{2}}{£¨3+4{k}^{2}£©^{2}}}$£¬ÓÃkÀ´±íʾ£¬ÓÉÌâÖÐkµÄ·¶Î§¼´¿ÉÈ·¶¨Ø­OPØ­µÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©ÓÉÒÑÖª¿ÉµÃ£ºÓÉÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{1}{2}$£¬ÕûÀíµÃ£º3a2=4b2£¬¢Ù
ÓÖµãM£¨1£¬$\frac{3}{2}$£©£¬ÔÚÍÖÔ²CÉÏ£¬
¡à$\frac{1}{{a}^{2}}+\frac{9}{4{b}^{2}}=1$¢Ú
ÓÉ¢Ù¢Ú½âµÃ£ºa2=4£¬b2=3£»
¹ÊÍÖÔ²CµÄ·½³ÌΪ£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£»
£¨2£©µ±k=0ʱ£¬P£¨0£¬2m£©ÔÚÍÖÔ²CÉÏ£¬½âµÃ£ºm=¡À$\frac{\sqrt{3}}{2}$£¬
¡àØ­OPØ­=$\sqrt{3}$£¬
µ±k¡Ù0ʱ£¬Ôò$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬
ÏûÈ¥y£¬»¯¼òÕûÀíµÃ£º£¨3+4k2£©x2+8kmx+4m2-12=0£¬
¡÷=64k2m2-4£¨3+4k2£©£¨4m2-12£©=48£¨3+4k2-m2£©£¾0£¬¢Û
ÉèA£¬B£¬PµãµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬£¨x0£¬y0£©£¬
ÓÉΤ´ï¶¨Àí¿ÉÖª£ºx1+x2=-$\frac{8km}{3+4{k}^{2}}$
ÔòÓÉÒÔÏß¶ÎOA£¬OBΪÁÚ±ß×÷ƽÐÐËıßÐÎOAPB£¬
¡àx0=x1+x2=-$\frac{8km}{3+4{k}^{2}}$£¬y0=y1+y2=k£¨x1+x2£©+2m=$\frac{6m}{3+4{k}^{2}}$£¬
ÓÉÓÚµãPÔÚÍÖÔ²CÉÏ£¬
¡à$\frac{{x}_{0}^{2}}{4}+\frac{{y}_{0}^{2}}{3}=1$£¬
´Ó¶ø$\frac{16{k}^{2}{m}^{2}}{£¨3+4{k}^{2}£©^{2}}$+$\frac{12{m}^{2}}{£¨3+4{k}^{2}£©^{2}}$=1£¬
»¯¼òµÃ£º4m2=3+4k2£¬¾­¼ìÑéÂú×ã¢Ûʽ£¬
ÓÖØ­OPØ­=$\sqrt{{x}_{0}^{2}+{y}_{0}^{2}}$=$\sqrt{\frac{64{k}^{2}{m}^{2}}{£¨3+4{k}^{2}£©^{2}}+\frac{36{m}^{2}}{£¨3+4{k}^{2}£©^{2}}}$£¬
=$\sqrt{\frac{4{m}^{2}£¨16{k}^{2}+9£©}{£¨3+4{k}^{2}£©^{2}}}$£¬
=$\sqrt{\frac{16{k}^{2}+9}{4{k}^{2}+3}}$£¬
=$\sqrt{4-\frac{3}{4{k}^{2}+3}}$£¬
ÓÉ0£¼|k|¡Ü$\frac{1}{2}$£¬
¡à3£¼4k2+3¡Ü4£¬Ôò$\frac{3}{4}$¡Ü$\frac{3}{4{k}^{2}+3}$£¼1£¬
¹Ê$\sqrt{3}$£¼Ø­OPØ­¡Ü$\frac{\sqrt{13}}{2}$£¬
×ÛÉÏ£¬Ø­OPØ­µÄȡֵ·¶Î§ÊÇ[$\sqrt{3}$£¬$\frac{\sqrt{13}}{2}$]£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÏòÁ¿µÄ×ø±ê±íʾ£¬¿¼²é·ÖÀàÌÖÂÛ˼Ï룬¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖª¡÷ABCµÄ¶¥µãA£¬BÔÚÔ²x2+y2=4ÉÏ£¬CÔÚÖ±Ïßl£ºy=x+2ÉÏ£¬ÇÒAB¡Îl£®
£¨1£©µ±AB±ßͨ¹ý×ø±êÔ­µãOʱ£¬ÇóABµÄ³¤¼°¡÷ABCµÄÃæ»ý£»
£¨2£©µ±¡ÏABC=90¡ã£¬ÇÒб±ßACµÄ³¤×î´óʱ£¬ÇóABËùÔÚÖ±Ïߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®µ±º¯Êýf£¨¦È£©=3sin¦È-4cos¦ÈÈ¡µÃ×î´óֵʱ£¬cos¦È=-$\frac{4}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªA£¬BµÄ¼«×ø±ê·Ö±ðΪ£¨4£¬$\frac{2¦Ð}{3}$£©£¬£¨2£¬$\frac{¦Ð}{3}$£©ÔòÖ±ÏßABµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{6}$£©=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªËÄÀâ×¶S-ABCDÖУ¬µ×ÃæABCDÊÇÖ±½ÇÌÝÐΣ¬¡ÏABC=90¡ã£¬AD¡ÎBC£¬SA=AB=BC=2£¬AD=1£¬SA¡Íµ×ÃæABCD£®
£¨1£©ÇóËÄÀâ×¶S-ABCDµÄÌå»ý£»
£¨2£©ÇóÒìÃæÖ±ÏßSCÓëADËù³É½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®¶ÔÓÚÆ½Ãæ¦Á£¬Ö±Ïßm£¬n¸ø³öÏÂÁÐÃüÌâ
¢ÙÈôm¡În£¬Ôòm£¬nÓë¦ÁËù³ÉµÄ½ÇÏàµÈ£®
¢ÚÈôm¡În£¬n¡Î¦Á£¬Ôòm¡Î¦Á£®
¢ÛÈôm¡Í¦Á£¬m¡Ín£¬Ôòn¡Í¦Á
¢ÜÈômÓënÒìÃæÇÒm¡Î¦Á£¬ÔònÓë¦ÁÏཻ£¬
ÆäÖÐÕýÈ·ÃüÌâ¸öÊýÓУ¨¡¡¡¡£©¸ö£®
A£®4B£®2C£®3D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÇóÏÂÁк¯ÊýµÄ¶¨ÒåÓò£¬²¢ÓÃÇø¼ä±íʾÆä½á¹û£®
£¨1£©y=$\sqrt{x+2}$+$\frac{2x+1}{{x}^{2}-x-6}$£»
£¨2£©y=$\frac{\sqrt{4-x}}{1-|x-2|}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÂíÔÆÍ¬Ñ§ÏòÄ³ÒøÐдû¿îMÍòÔª£¬ÓÃÓÚ¹ºÂòij¼þÉÌÆ·£¬´û¿îµÄÔÂÀûÂÊΪ5%£¨°´¸´Àû¼ÆË㣩£¬°´ÕÕ»¹¿îºÏͬ£¬ÂíÔÆÍ¬Ñ§Ã¿¸öÔ¶¼»¹¿îxÍòÔª£¬20¸öÔ»¹Ç壬ÔòÏÂÁйØÏµÊ½ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®20x=MB£®20x=M£¨1+5%£©20C£®20x£¼M£¨1+5%£©20D£®20x£¾M£¨1+5%£©20

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Ä³¸ßÈýÄê¼¶ÓÐ500Ãûͬѧ£¬½«ËûÃǵÄÉí¸ß£¨µ¥Î»£ºcm£©Êý¾Ý»æÖÆ³ÉÆµÂÊ·Ö²¼Ö±·½Í¼£¨Èçͼ£©£¬ÈôÔÚÉí¸ß[160£¬170£©£¬[170£¬180£©£¬[180£¬190]Èý×éÄÚµÄѧÉúÖУ¬Ó÷ֲã³éÑùµÄ·½·¨Ñ¡È¡30È˲μÓÒ»Ïî»î¶¯£¬Ôò´ÓÉí¸ßÔÚ[160£¬170£©ÄÚµÄѧÉúÖÐѡȡµÄÈËÊýӦΪ15£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸