精英家教网 > 高中数学 > 题目详情
8.直线x-$\sqrt{3}$y+6=0的倾斜角是(  )
A.60°B.120°C.30°D.150°

分析 设直线x-$\sqrt{3}$y+6=0的倾斜角是α,则tanα=$\frac{\sqrt{3}}{3}$,即可得出.

解答 解:设直线x-$\sqrt{3}$y+6=0的倾斜角是α,则tanα=$-\frac{1}{-\sqrt{3}}$=$\frac{\sqrt{3}}{3}$,
∴α=30°
故选:C.

点评 本题考查了直线的倾斜角与斜率的关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=λcos2(ωx+$\frac{π}{6}$)-3(λ>0,ω>0)的最大值为2,最小正周期为$\frac{2π}{3}$.
(1)求函数y=f(x)的解析式;
(2)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知向量$\overrightarrow a=(2,1),\overrightarrow b=(3,m)$,若向量$(2\overrightarrow a-\overrightarrow b)$与向量$\overrightarrow b$共线,则$|{\overrightarrow b}|$=(  )
A.$\frac{{3\sqrt{5}}}{2}$B.$3\sqrt{5}$C.$\frac{{3\sqrt{7}}}{2}$D.$3\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知幂函数y=f(x)的图象过点(2,$\frac{\sqrt{2}}{2}$),则(  )
A.f(1)>f(2)B.f(1)<f(2)
C.f(1)=f(2)D.f(1)与f(2)大小无法判定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某品牌汽车的4S店对最近60位采用分期付款的购车者人数进行统计,统计结果如下表所示:
付款方式分1期分2期分3期分4期
频数20a14b
已知分4期付款的频率为$\frac{1}{6}$,并且4S店销售一辆该品牌的汽车,顾客分1期付款其利润为1万元,分2期或3期付款其利润为2万元,分4期付款其利润为3万元,以频率作为概率.
(1)求事件A“购买该品牌汽车的3位顾客中,至多有1位分4期付款”的概率;
(2)用X表示销售一两该品牌汽车的利润,求X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知a,b∈R,集合A={1,b,a+b},$B=\left\{{0,\frac{a}{b},a}\right\}$,且A=B,则a+2b=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设P:方程$\frac{{x}^{2}}{3-a}$+$\frac{{y}^{2}}{1+a}$=1表示椭圆,Q:(a-2)x2+2(a-2)x-4<0对任意实数x恒成立,若P∧Q是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在同一直角坐标系中,将曲线x2-36y2-8x+12=0变成曲线x′2-y′2-4x′+3=0,则满足条件的伸缩变换为$\left\{\begin{array}{l}{{x}^{′}=\frac{x}{4}+1}\\{{y}^{′}=9y}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,其左、右顶点分别为A1(-2,0),A2(2,0).过点D(1,0)的直线l与该椭圆相交于M、N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线A1M与NA2的斜率分别为k1,k2,试问:是否存在实数λ,使得k2=λk1?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案