精英家教网 > 高中数学 > 题目详情
11.若f(x)=x2,?t∈R,对于?x∈[2,m],都有f(x+t)≤2x成立,则m的最大值是8.

分析 设g(x)=f(x+t)-2x=x2+2(t-1)x+t2,由已知可得?x∈[2,m],g(x)≤0恒成立,即g(2)≤0且g(m)≤0,先求出t的范围,进而可得m的取值范围.

解答 解:设g(x)=f(x+t)-2x=x2+2(t-1)x+t2
由题值?x∈[2,m],f(x+t)≤2x恒成立,
即?x∈[2,m],g(x)≤0恒成立,
即g(2)≤0且g(m)≤0,
即t2+4t≤0,m2+2(t-1)m+t2≤0,
则t∈[-4,0],
当t=0时,得到m2-2m≤0,解得0≤m≤2;
当t=-4时,得到m2-5m+4≤0,解得2≤m≤8
综上得到:m∈[2,8],
∴m的最大值是8,
故答案为:8.

点评 本题考查的知识点是函数恒成立问题,熟练掌握函数的图象和性质,会进行函数恒成立与不等式之间的转化是解答的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知一个算法,其流程图如图,则输出结果是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,则输出的S的值是(  )
A.0B.-$\frac{1}{2}$C.-1D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a=log42,b=log63,c=lg5,则(  )
A.a<b<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=ex-ax2(e为自然对数的底),曲线y=f(x)在点(1,f(1))处的切线方程为y=(e-1)x+b.
(Ⅰ)求a、b的值;
(Ⅱ)设x≥0,求证:f(x)≥$\frac{1}{2}{x^2}$+2x-2.

查看答案和解析>>

科目:高中数学 来源:2017届四川成都七中高三10月段测数学(文)试卷(解析版) 题型:选择题

已知在中,上的点,则的距离的乘积的最大值为( )

A.3 B.2 C. D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设不等式组$\left\{\begin{array}{l}{y≤1}\\{x+y≥0}\\{x-y-2≤0}\end{array}\right.$ 表示的平面区域为D,在区域D内随机取一点M,则点M落在圆x2+y2=1内的概率为$\frac{π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数是(  )
A.y=lnxB.y=x3C.$y={(\frac{1}{2})^x}$D.y=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.陕西电视台为了了解观众对(央视快报)的满意度,通过都市热线随机调查观众,现从调查的观众中随机抽取12名,用精业图记录他们的满意度分数如图,则这12个分数的众数和中位数分别是(  )
A.92,92B.91,91C.92,91D.92,91,5

查看答案和解析>>

同步练习册答案