精英家教网 > 高中数学 > 题目详情
19.已知a=log42,b=log63,c=lg5,则(  )
A.a<b<cB.c<a<bC.c<b<aD.b<c<a

分析 根据对数函数的性质,判断对数的取值范围即可.

解答 解:a=log42=$\frac{1}{2}$,b=log63$>lo{g}_{6}\sqrt{3}=\frac{1}{2}$,
c=lg5>$\frac{1}{2}$,
又b-c=log63-lg5=$\frac{lg3}{lg6}-lg5$=$\frac{lg3-lg5lg6}{lg6}$=$\frac{lg3-(1-lg2)(lg2+lg3)}{lg6}$
=$\frac{lg2(lg2+lg3-1)}{lg6}$
=$\frac{lg2•lg\frac{3}{5}}{lg6}<0$,
∴b<c,
故a<b<c,
故选:A.

点评 本题主要考查对数值的大小比较,根据对数的运算性质,判断对数的取值范围是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知直线l1:ax+2y+1=0,l2:(3-a)x-y+a=0,则条件“a=1”是“l1⊥l2“的(  )
A.充分必要条件B.充分不必要条件
C.必要不充分条件D.既不必要也不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),F1、F2为左右焦点,B为短轴端点,且S${\;}_{△B{F}_{1}{F}_{2}}$=4,离心率为$\frac{\sqrt{2}}{2}$,O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点M、N,且满足|$\overrightarrow{OM}$+$\overrightarrow{ON}$|=|$\overrightarrow{OM}$-$\overrightarrow{ON}$|?若存在,求出该圆的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在复平面内,复数$\frac{2-3i}{3+2i}$对应的点的坐标为(  )
A.(0,-1)B.$(0,-\frac{13}{9})$C.$(\frac{12}{13},-1)$D.$(\frac{12}{9},-\frac{13}{9})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}满足an+an+1=(-1)${\;}^{\frac{n(n+1)}{2}}$n,Sn是其前n项和,若S2015=-1007-b,且a1b>0,则$\frac{1}{{a}_{1}}$+$\frac{2}{b}$的最小值为$3+2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(x)=min$\left\{{2\sqrt{x},|x-2|}\right\}$其中min$\{a,b\}=\left\{\begin{array}{l}a,a≤b\\ b,b≤a\end{array}$,若动直线y=m与函数y=f(x)的图象有三个交点,它们的横坐标分别为x1,x2,x3,则x1+x2+x3的范围为(4,8-2$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若f(x)=x2,?t∈R,对于?x∈[2,m],都有f(x+t)≤2x成立,则m的最大值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递减,若实数a满足$f({log_2}a)+f({log_{\frac{1}{2}}}a)≤2f(1)$,则实数a的取值范围是(  )
A.(0,2]B.$[\frac{1}{2},2]$C.[2,+∞)D.$(0,\frac{1}{2}]∪[{2,+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设f(x)是周期为4的周期函数,且当x∈(-1,3]时,$f(x)=\left\{{\begin{array}{l}{m\sqrt{1-{x^2}},\;\;\;\;\;-1<x≤1}\\{1-|{x-2}|,\;\;\;\;\;\;\;\;1<x≤3}\end{array}}\right.$,若函数g(x)=3f(x)-x有且仅有五个零点,则正实数m的取值范围是($\frac{\sqrt{15}}{3}$,$\sqrt{7}$).

查看答案和解析>>

同步练习册答案