精英家教网 > 高中数学 > 题目详情
20.已知圆C的方程为:x2+y2-2mx-2y+4m-4=0,(m∈R).
(1)试求m的值,使圆C的面积最小,并写出此时圆C的方程;
(2)求与(1)中所求的圆C相切,且过点(1,-2)的直线l的方程.

分析 (1)通过配方先将圆的一般方程化成标准方程,利用二次函数的最值,可得m的值,并写出此时圆C的方程;
(2)根据(1)的结论确定圆的方程,然后设出直线方程,利用直线与圆相切的条件,建立关系,求得直线方程.

解答 解:配方得圆的方程:(x-m)2+(y-1)2=(m-2)2+1
(1)当m=2时,圆的半径有最小值1,此时圆的面积最小;圆的方程为(x-2)2+(y-1)2=1.
(2)当m=2时,圆的方程为(x-2)2+(y-1)2=1
设所求的直线方程为y+2=k(x-1),即kx-y-k-2=0
由直线与圆相切,得$\frac{|2k-1-k-2|}{\sqrt{{k}^{2}+1}}$=1,∴k=$\frac{4}{3}$.
所以切线方程为y+2=$\frac{4}{3}$(x-1),即4x-3y-10=0
又过点(1,-2)且与x轴垂直的直线x=1与圆也相切
∴所求的切线方程为x=1与4x-3y-10=0.

点评 本题考查了圆的方程以及直线与圆的位置关系,同时考查了二次函数的最值问题,在求直线方程时注意考虑斜率不存在的情况,是个中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若sin2xsin3x=cos2xcos3x,则x的值是(  )
A.$\frac{π}{10}$B.$\frac{π}{6}$C.$\frac{π}{5}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知∠α的终边落在阴影所表示的范围内(包括边界),则∠α的集合为{α|-45°+k•360°≤α≤k•360°或90°+k•360°≤α≤135°+k•360°,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个学生通过某种英语听力测试的概率是$\frac{1}{2}$,他连续测试2次,那么其中恰有1次获得通过的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如果关于x的不等式$a≤\frac{5}{9}{x^2}-\frac{10}{3}x+6≤b$的解集是[x1,x2]∪[x3,x4],x1<x2<x3<x4,则$\sum_{i=1}^4{x_i}$=12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若不等式ax2-x+c>0的解为{x|-1<x<$\frac{2}{3}$},则a+c=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设集合A={x∈N|$\frac{6}{3-x}$∈Z},B={(x,y)|x+y=3,x∈N,y∈N},则用列举法表示A={0,1,2,4,5,6,9},B={(0,3),(1,2),(2,1),(3,0)}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=x2+bln(x+1),其中b≠0.
(1)求函数f(x)的单调区间;
(2)证明:当b=1时,对于任意的x1,x2∈[1,+∞),且x1≠x2都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间,讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力(f(x)的值越大,表示接受能力越强),x表示提出和讲授概念的时间(单位:分),可以有以下公式:f(x)=$\left\{\begin{array}{l}{-0.1{x}^{2}+2.6x+43(0<x≤10)}\\{59(10<x≤16)}\\{-3x+107(16<x≤30)}\end{array}\right.$
(1)开讲多少分钟后,学生的接受能力最强?能维持多少分钟?
(2)开讲5分钟与开讲20分钟比较,学生的接受能力何时强一些?
(3)一个数学难题,需要55的接受能力以及13分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这个难题?

查看答案和解析>>

同步练习册答案