精英家教网 > 高中数学 > 题目详情
在四棱锥中,,且DB平分,E为PC的中点,, PD=3,(1)证明   (2)证明
(3)求四棱锥的体积。
解:(1) 证明:设,连结EH,在中,因为AD=CD,且DB平分,所以H为AC的中点,又由题设知E为PC的中点,故,
,
所以
(2)证明:因为
所以
由(1)知,,

(3)四棱锥的体积为2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

 如图,已知点P是三角形ABC外一点,且底面
,点分别在棱上,且 。 。 

(1)求证:平面
(2)当的中点时,求与平面所成的角的大小;
(3)是否存在点使得二面角为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

 

 
如图所示,在正三棱柱中,的中点,在线段上且

(I)证明:
(II)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题14分)如图,在四棱锥中,底面是边长为1的菱形,, , ,的中点,的中点.
(Ⅰ)证明:
(Ⅱ)求异面直线所成角的大小;
(Ⅲ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,四棱锥P-ABCD中,底面ABCD为菱形,且,侧面PAD是正三角形,其所在的平面垂直于底面ABCD,点GAD的中点.

(1)求证:BGPAD
(2)EBC的中点,在PC上求一点F,使得PGDEF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在四面体ABCD中,截面PQMN是正方形,则在下列命题中,不一定成立的为
A.AC⊥BEB.AC//截面PQMN
C.异面直线PM与BD所成的角为45°D.AC=BD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本大题8分)已知正方体,求:

(1)异面直线所成的角;
(2)证明:直线//平面C
(3)二面角D— AB—C的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

如图,在多面体ABCDEF中,ABCD是正方形,AB=2EF=2,EFFB,∠BFC=BF=FCHBC的中点.
(Ⅰ)求证:平面EDB
(Ⅱ)求证:AC⊥平面EDB
(Ⅲ)求四面体BDEF的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.设地球半径为R,如果A、B两点在北伟30°的纬线上,它们的经度差为,则A、B两点的球面距离为                                                                                                 (   )
A.     B.      C.                  D.

查看答案和解析>>

同步练习册答案