分析 (1)根据函数奇偶性的定义即可判断f(x)的奇偶性;
(2)利用函数单调性的定义即可证明f(x)在定义域上单调递减.
解答 解:(1)函数的定义域为(-∞,+∞),
则f(-x)=$\frac{(\frac{1}{2})^{-x}-1}{(\frac{1}{2})^{-x}+1}$=$\frac{1-(\frac{1}{2})^{x}}{1+(\frac{1}{2})^{x}}$=-$\frac{(\frac{1}{2})^{x}-1}{(\frac{1}{2})^{x}+1}$=-f(x).
则f(x)为奇函数;
(2)证明f(x)在定义域上单调递减.
f(x)=$\frac{(\frac{1}{2})^{x}-1}{(\frac{1}{2})^{x}+1}$=$\frac{{(\frac{1}{2})}^{x}+1-2}{{(\frac{1}{2})}^{x}+1}$=1-$\frac{2}{(\frac{1}{2})^{x}+1}$,
设x1<x2,
则f(x1)-f(x2)=1-$\frac{2}{(\frac{1}{2})^{{x}_{1}}+1}$-1+$\frac{2}{(\frac{1}{2})^{{x}_{2}}+1}$=$\frac{2}{(\frac{1}{2})^{{x}_{2}}+1}$-$\frac{2}{(\frac{1}{2})^{{x}_{1}}+1}$=$\frac{2[(\frac{1}{2})^{{x}_{1}}-(\frac{1}{2})^{{x}_{2}}]}{[(\frac{1}{2})^{{x}_{1}}+1][(\frac{1}{2})^{{x}_{2}}+1]}$,
∵x1<x2,
∴$(\frac{1}{2})^{{x}_{1}}$>$(\frac{1}{2})^{{x}_{2}}$,即$(\frac{1}{2})^{{x}_{1}}$-$(\frac{1}{2})^{{x}_{2}}$>0,
则f(x1)>f(x2),
即f(x)在定义域上单调递减.
点评 本题主要考查函数奇偶性和单调性的判断,利用定义法是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 13 | C. | 5 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com