精英家教网 > 高中数学 > 题目详情
8.已知集合A=[-2,5],B=(-5,0],则A∪B=(-5,5],A∩B=[-2,0].

分析 直接利用并集与交集的定义区间即可.

解答 解:集合A=[-2,5],B=(-5,0],则A∪B=(-5,5].
A∩B=[-2,0].
故答案为:(-5,5];[-2,0].

点评 本题考查集合的交集与并集的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{(\frac{1}{2})^{x}-1}{(\frac{1}{2})^{x}+1}$.
(1)判断f(x)的奇偶性;
(2)证明f(x)在定义域上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.f(x)=$\left\{\begin{array}{l}{{2}^{x}-a,x<1}\\{4(x-a)(x-2a),x≥1}\end{array}\right.$,若a=1,则f(x)的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\frac{2x-1}{x+1}$,x∈[-2,-1)∪(-1,2]的值域为(-∞,1]∪[5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.计算:Tn=$\frac{1}{5}$+$\frac{1}{21}$+$\frac{1}{45}$+…+$\frac{1}{4{n}^{2}+4n-3}$=$\frac{1}{3}$-$\frac{1}{4}$($\frac{1}{2n+1}$+$\frac{1}{2n+3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设A=(-∞,1),B=(0,+∞),A∩B=(  )
A.RB.(0,1)C.(-∞,0)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设全集为R,集合A={x|$\sqrt{\frac{x-3}{x-6}}$},B={x|lg(2+x)(9-x)}
(1)求A∪B,(CRA)∩B;
(2)已知C={x|2a≤x<a+1},若C⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.不等式x2+5x≤2x2的解集用区间表示为(-∞,0]∪[5,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某单位职工工资经过六年翻了三番,则每年比上一年平均增长的百分率是 (  )(下列数据仅供参考:$\sqrt{2}$=1.41,$\sqrt{3}$=1.73,$\root{3}{3}$=1.44,$\root{6}{6}$=1.38)
A.38%B.41%C.44%D.73%

查看答案和解析>>

同步练习册答案