精英家教网 > 高中数学 > 题目详情
10.函数f(x)=mx2+(m-1)x是偶函数,则m的值是(  )
A.1B.-1C.2D.0

分析 根据函数f(x)=mx2+(m-1)x是偶函数,可得:函数f(-x)=f(x),进而得到m的值.

解答 解:∵函数f(x)=mx2+(m-1)x是偶函数,
∴函数f(-x)=f(x),
即m(-x)2+(m-1)(-x)=mx2-(m-1)x=mx2+(m-1)x,
∴m=1,
故选:A

点评 本题考查的知识点是二次函数的图象和性质,函数的奇偶性,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-(x-2m)(x+m+3)(其中m<-1),g(x)=2x-2.
(Ⅰ)若命题p:log2[g(x)]≥1是假命题,求x的取值范围;
(Ⅱ)若命题q:?x∈(1,+∞),f(x)<0或g(x)<0为真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知ABC的顶点坐标为A(1,0),B(4,3),C(6,-4),点P的横坐标为3,且$\overrightarrow{AP}=λ\overrightarrow{PB}$.
(1)求实数λ的值.
(2)试在边BC上求一点Q,使得$\overrightarrow{AQ}⊥\overrightarrow{BC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{(\frac{1}{2})^{x}-1}{(\frac{1}{2})^{x}+1}$.
(1)判断f(x)的奇偶性;
(2)证明f(x)在定义域上单调递减.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=-x2+2ax-a+1在区间[0,1]上的最大值为3,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知p:|x+1|≤2,q:(x+1)(x-m)≤0.
(1)若m=4,命题“p或q”为真,“p且q”为假,求实数x的取值范围;
(2)若¬q是¬p的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若$\root{6}{4{a}^{2}-4a+1}$=$\root{3}{1-2a}$,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.f(x)=$\left\{\begin{array}{l}{{2}^{x}-a,x<1}\\{4(x-a)(x-2a),x≥1}\end{array}\right.$,若a=1,则f(x)的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设全集为R,集合A={x|$\sqrt{\frac{x-3}{x-6}}$},B={x|lg(2+x)(9-x)}
(1)求A∪B,(CRA)∩B;
(2)已知C={x|2a≤x<a+1},若C⊆B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案