精英家教网 > 高中数学 > 题目详情
10.若存在n∈N*使得(ax+1)2n和(x+a)2n+1(其中a≠0)的展开式中含xn项的系数相等,则a的最大值为$\frac{2}{3}$.

分析 利用二项展开式的通项公式求出(ax+1)2n和(x+a)2n+1的展开式中含xn项的系数,根据已知条件得到关于a,n的方程;分离出a看成关于n的函数,通过函数的单调性,求出a的范围.

解答 解:设(x+a)2n+1的展开式为Tr+1
则Tr+1=C2n+1rx2n+1-rar
令2n+1-r=n,
得r=n+1,
所以xn的系数为C2n+1n+1an+1
由C2n+1n+1mn+1=C2nnan
得a=$\frac{n+1}{2n+1}$是关于n的减函数,
∵n∈N+
∴$\frac{1}{2}$<a≤$\frac{2}{3}$,
故a的最大值为$\frac{2}{3}$,
故答案为:$\frac{2}{3}$.

点评 本题考查通过二项展开式的通项公式解决二项展开式的特定项问题,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知点M是半径为4的圆C内的一个定点,点P是圆C上的一个动点,线段MP的垂直平分线l与半径CP相交于点Q,则|CQ|•|QM|的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数是偶函数的是(  )
A.y=tan3xB.y=cosxC.y=2sinx-1D.y=2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某公司为了解下属某部门对企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,得到的频率分布表如下:
分组频数频率
[50,60)50.1
[60,70)m0.2
[70,80)15n
[80,90)120.24
80.16
合计501
(Ⅰ)求出频率分布表中m、n位置的相应数据,并画出频率分布直方图;
(Ⅱ)同一组中的数据用区间的中点值作代表,求这50名职工对该部门的评分的平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$\overrightarrow a$=($\sqrt{3}$sinx,cosx),$\overrightarrow b$=(cosx,-cosx),函数f(x)=$\overrightarrow a$•$\overrightarrow b$-$\frac{1}{2}$.
(1)若x∈[$\frac{π}{4}$,$\frac{π}{2}$],求函数f(x)的最值及对应x的值;
(2)若不等式[f(x)-m]2<1在x∈[$\frac{π}{4}$,$\frac{π}{2}$]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.半径为2,圆心为300°的圆弧的长为$\frac{10π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知直线l:y=x+m与圆C:x2+y2-2x+4y-4=0相交于A,B不同两点.
(1)求m的取值范围;
(2)设以AB为直径的圆经过原点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知β为第二象限角,且满足$\frac{{2{{tan}^2}β}}{3tanβ+2}=1$
(1)求$sin(β+\frac{3π}{2})$,
(2)$\frac{2}{3}{sin^2}β+cosβ•sinβ$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,三棱锥P-ABC中,D是BC的中点,△PAB为等边三角形,△ABC为等腰直角三角形,AB=AC=4,且二面角P-AB-D的余弦值为$\frac{\sqrt{3}}{3}$.
(Ⅰ)求证:平面ABC⊥平面PBC;
(Ⅱ)若点M是线段AP上一动点,点N为线段AB的四等分点(靠近B点),求直线NM与平面PAD所成角的余弦值的最小值.

查看答案和解析>>

同步练习册答案