精英家教网 > 高中数学 > 题目详情
1.下列函数是偶函数的是(  )
A.y=tan3xB.y=cosxC.y=2sinx-1D.y=2x

分析 利用函数奇偶性的定义逐个判断.

解答 解:∵tan(-3x)=-tan3x,∴y=tan3x是奇函数;
∵cos(-x)=cosx,∴y=cosx是偶函数;
∵2sin(-x)-1=-2sinx-1,∴y=2sinx-1为非奇非偶函数;
∵2-x=$\frac{1}{{2}^{x}}$,∴y=2x为非奇非偶函数.
故选B.

点评 本题考查了函数奇偶性的判断,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x-a|(a∈R).
(1)当a=2时,解不等式|x-$\frac{1}{3}$|+$\frac{1}{3}$f(x)≥1;
(2)若不等式|x-$\frac{1}{3}$|+$\frac{1}{3}$f(x)≤x的解集包含[$\frac{1}{3}$,$\frac{1}{2}$],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…,[80,90),[90,100].
(Ⅰ)求频率分布直方图中a的值;
(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;
(Ⅲ)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,设抛物线C1:y2=-4mx(m>0)的准线l与x轴交于椭圆C2:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦点F2,F1为C2的左焦点.椭圆的离心率为e=$\frac{1}{2}$,抛物线C1与椭圆C2交于x轴上方一点P,连接PF1并延长其交C1于点Q,M为C1上一动点,且在P,Q之间移动.
(1)当$\frac{a}{2}+\frac{{\sqrt{3}}}{b}$取最小值时,求C1和C2的方程;
(2)若△PF1F2的边长恰好是三个连续的自然数,当△MPQ面积取最大值时,求面积最大值以及此时直线MP的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C的对边分别为a,b,c,且 $\frac{cosB}{b}+\frac{cosC}{2a+c}$=0.
(Ⅰ)求角B的大小;
(Ⅱ)若b=$\sqrt{13}$,a+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,某幼儿园有一个游乐场ABCD,其中AB=50米,BC=40米,由于幼儿园招生规模增大,需将该游乐场扩大成矩形区域EFGH,要求A、B、C、D四个点分别在矩形EFGH的四条边(不含顶点)上.设∠BAE=θ(弧度),EF的长为y米.
(1)求y关于θ的函数表达式;
(2)求矩形区域EFGH的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=sinωx+$\sqrt{3}$cosωx(ω>0)的周期为π.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)说明函数f(x)的图象可由y=sinx的图象经过怎样的变换而得到.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若存在n∈N*使得(ax+1)2n和(x+a)2n+1(其中a≠0)的展开式中含xn项的系数相等,则a的最大值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦距为2c,直线l:y=kx-kc.若k=$\sqrt{3}$,则l与Γ的左、右两支各有一个交点;若k=$\sqrt{15}$,则l与Γ的右支有两个不同的交点,则Γ的离心率的取值范围为(  )
A.(1,2)B.(1,4)C.(2,4)D.(4,16)

查看答案和解析>>

同步练习册答案