精英家教网 > 高中数学 > 题目详情
12.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…,[80,90),[90,100].
(Ⅰ)求频率分布直方图中a的值;
(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;
(Ⅲ)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.

分析 (Ⅰ)利用频率分布直方图中的信息,所有矩形的面积和为1,得到a;
(Ⅱ)对该部门评分不低于80的即为90和100,的求出频率,估计概率;
(Ⅲ)求出评分在[40,60]的受访职工和评分都在[40,50]的人数,随机抽取2人,列举法求出所有可能,利用古典概型公式解答.

解答 解:(Ⅰ)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以a=0.006.
(Ⅱ)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4.
所以该企业职工对该部门评分不低于80的概率的估计值为0.4.
(Ⅲ)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3
受访职工中评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2
从这5名受访职工中随机抽取2人,所有可能的结果共有10种,
它们是Ω={(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2)}.
又因为所抽取2人的评分都在[40,50)的结果有1种,即(B1,B2),
故所求的概率为P=$\frac{1}{10}$.

点评 本题考查了频率分布直方图的认识以及利用图中信息求参数以及由频率估计概率,考查了利用列举法求满足条件的事件,并求概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若实数a,b,c满足2a=$\frac{1}{a}$,log2b=$\frac{1}{b}$,lnc=$\frac{1}{c}$,则(  )
A.a<c<bB.a<b<cC.b<c<aD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知x∈[-$\sqrt{3}$,$\sqrt{3}$],y∈R+,则(x-y)2+($\sqrt{3-{x}^{2}}$-$\frac{9}{y}$)2的最小值为$21-6\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知点M是半径为4的圆C内的一个定点,点P是圆C上的一个动点,线段MP的垂直平分线l与半径CP相交于点Q,则|CQ|•|QM|的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数$f(x)=\frac{{3{x^2}+ax+26}}{x+1}$,若存在x∈N*使得f(x)≤2成立,则实数a的取值范围为(-∞,-15].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=sin($\frac{πx}{4}$-$\frac{π}{6}$)-2cos2$\frac{πx}{8}$+1.
(Ⅰ)求函数y=f(x)的最小正周期,并求出函数y=f(x)对称中心的坐标;
(Ⅱ)求函数y=f(x)在 x∈[$\frac{2}{3}$,2]时的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$f(x)=2sin({ωx+φ})({0<ω<12,|φ|<\frac{π}{2}})$,若$f(0)=-\sqrt{3}$,且函数f(x)的图象关于直线$x=-\frac{π}{12}$对称,则以下结论正确的是(  )
A.函数f(x)的最小正周期为$\frac{π}{3}$
B.函数f(x)的图象关于点$({\frac{7π}{9},0})$对称
C.函数f(x)在区间$({\frac{π}{4},\frac{11π}{24}})$上是增函数
D.由y=2cos2x的图象向右平移$\frac{5π}{12}$个单位长度可以得到函数f(x)的图象

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数是偶函数的是(  )
A.y=tan3xB.y=cosxC.y=2sinx-1D.y=2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知直线l:y=x+m与圆C:x2+y2-2x+4y-4=0相交于A,B不同两点.
(1)求m的取值范围;
(2)设以AB为直径的圆经过原点,求直线l的方程.

查看答案和解析>>

同步练习册答案