精英家教网 > 高中数学 > 题目详情
17.设函数f(x)=sin($\frac{πx}{4}$-$\frac{π}{6}$)-2cos2$\frac{πx}{8}$+1.
(Ⅰ)求函数y=f(x)的最小正周期,并求出函数y=f(x)对称中心的坐标;
(Ⅱ)求函数y=f(x)在 x∈[$\frac{2}{3}$,2]时的最大值.

分析 (I)根据三角恒等变换化简f(x),利用正弦函数的性质求出周期和对称中心;
(II)根据x的范围求出$\frac{π}{4}$x-$\frac{π}{3}$的范围,利用正弦函数的单调性得出最值.

解答 解:(Ⅰ)f(x)=$\frac{\sqrt{3}}{2}$sin$\frac{π}{4}$x-$\frac{1}{2}$cos$\frac{π}{4}$x-cos$\frac{π}{4}$x=$\frac{\sqrt{3}}{2}$sin$\frac{π}{4}$x-$\frac{3}{2}$cos$\frac{π}{4}$x=$\sqrt{3}$sin($\frac{π}{4}$x-$\frac{π}{3}$),
故f(x)的最小正周期为T=$\frac{2π}{\frac{π}{4}}$=8,
令$\frac{π}{4}$x-$\frac{π}{3}$=kπ,解得x=$\frac{4}{3}$+4k,k∈Z,
所以函数的对称中心为($\frac{4}{3}$+4k,0),k∈Z.
(Ⅱ)当 x∈[$\frac{2}{3}$,2]时,$\frac{π}{4}$x-$\frac{π}{3}$∈[-$\frac{π}{6}$,$\frac{π}{6}$],
∴当$\frac{π}{4}$x-$\frac{π}{3}$=$\frac{π}{6}$时,f(x)取得最大值$\sqrt{3}•\frac{1}{2}$=$\frac{\sqrt{3}}{2}$.

点评 本题考查了三角恒等变换,正弦函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.($\sqrt{3}$-2x)7的展开式中,x3的系数是-2520(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{169}$=1的焦点坐标为(  )
A.(5,0),(-5,0)B.(0,5),(0,-5)C.(0,12),(0,-12)D.(12,0),(-12,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知△ABC中,AC=$\sqrt{2}$,BC=$\sqrt{6}$,∠ACB=$\frac{π}{6}$,若线段BA的延长线上存在点D,使∠BDC=$\frac{π}{4}$,则CD=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…,[80,90),[90,100].
(Ⅰ)求频率分布直方图中a的值;
(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;
(Ⅲ)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某研究机构在对线性相关的两个变量x和y进行统计分析时,得到如下数据:
x4681012
y12356
由表中数据求的y关于x的回归方程为$\hat y=0.65x+\hat a$,则在这些样本点中任取一点,该点落在回归直线下方的概率为(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,设抛物线C1:y2=-4mx(m>0)的准线l与x轴交于椭圆C2:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦点F2,F1为C2的左焦点.椭圆的离心率为e=$\frac{1}{2}$,抛物线C1与椭圆C2交于x轴上方一点P,连接PF1并延长其交C1于点Q,M为C1上一动点,且在P,Q之间移动.
(1)当$\frac{a}{2}+\frac{{\sqrt{3}}}{b}$取最小值时,求C1和C2的方程;
(2)若△PF1F2的边长恰好是三个连续的自然数,当△MPQ面积取最大值时,求面积最大值以及此时直线MP的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,某幼儿园有一个游乐场ABCD,其中AB=50米,BC=40米,由于幼儿园招生规模增大,需将该游乐场扩大成矩形区域EFGH,要求A、B、C、D四个点分别在矩形EFGH的四条边(不含顶点)上.设∠BAE=θ(弧度),EF的长为y米.
(1)求y关于θ的函数表达式;
(2)求矩形区域EFGH的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若$π<α<\frac{3π}{2}$,则$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$=sin$\frac{α}{2}$.

查看答案和解析>>

同步练习册答案