精英家教网 > 高中数学 > 题目详情
7.若$π<α<\frac{3π}{2}$,则$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$=sin$\frac{α}{2}$.

分析 利用二倍角的余弦公式的应用,以及三角函数在各个象限中的符号,化简所给的式子,可得结果.

解答 解:若$π<α<\frac{3π}{2}$,则$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$=$\sqrt{\frac{1}{2}+\frac{1}{2}|cosα|}$=$\sqrt{\frac{1-cosα}{2}}$
=|sin$\frac{α}{2}$|=$sin\frac{α}{2}$,
故答案为:sin$\frac{α}{2}$.

点评 本题主要考查二倍角的余弦公式的应用,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=sin($\frac{πx}{4}$-$\frac{π}{6}$)-2cos2$\frac{πx}{8}$+1.
(Ⅰ)求函数y=f(x)的最小正周期,并求出函数y=f(x)对称中心的坐标;
(Ⅱ)求函数y=f(x)在 x∈[$\frac{2}{3}$,2]时的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某公司为了解下属某部门对企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,得到的频率分布表如下:
分组频数频率
[50,60)50.1
[60,70)m0.2
[70,80)15n
[80,90)120.24
80.16
合计501
(Ⅰ)求出频率分布表中m、n位置的相应数据,并画出频率分布直方图;
(Ⅱ)同一组中的数据用区间的中点值作代表,求这50名职工对该部门的评分的平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.半径为2,圆心为300°的圆弧的长为$\frac{10π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知直线l:y=x+m与圆C:x2+y2-2x+4y-4=0相交于A,B不同两点.
(1)求m的取值范围;
(2)设以AB为直径的圆经过原点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设M、N是两个非空集合,定义M?N={(a,b)|a∈M,b∈N},若P={0,1,2 },Q={1,2},则P?Q中元素的个数是(  )
A.4B.9C.6D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知β为第二象限角,且满足$\frac{{2{{tan}^2}β}}{3tanβ+2}=1$
(1)求$sin(β+\frac{3π}{2})$,
(2)$\frac{2}{3}{sin^2}β+cosβ•sinβ$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.复数$\frac{4}{1-i}$-$\frac{10}{3+i}$的共轭复数对应的点所在象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一个焦点为F,以原点为圆心,OF为半径的圆与双曲线交于A,B,C,D四点,若四边形ABCD恰为正方形,且周长为6b,则双曲线的离心率为(  )
A.$\frac{{\sqrt{7}}}{3}$B.3C.$\frac{{\sqrt{11}}}{3}$D.$\frac{{\sqrt{17}}}{3}$

查看答案和解析>>

同步练习册答案