分析 (1)(2)根据$\frac{{2{{tan}^2}β}}{3tanβ+2}=1$,求出cosβ和sinβ,即可求出$sin(β+\frac{3π}{2})$和$\frac{2}{3}{sin^2}β+cosβ•sinβ$的值
解答 解:由$\frac{{2{{tan}^2}β}}{3tanβ+2}=1$,
可得:2tan2β-3tanβ-2=0,即(2tanβ+1)(tanβ-2)=0,
∵β为第二象限角,
∴2tanβ+1=0,即tanβ=$-\frac{1}{2}$.
可得:$\frac{sinβ}{cosβ}=-\frac{1}{2}$,
∵sin2β+cos2β=1,
可得$sinβ=\frac{\sqrt{5}}{5}$,cosβ=$-\frac{2\sqrt{5}}{5}$.
(1)$sin(β+\frac{3π}{2})$=-cosβ=$\frac{2\sqrt{5}}{5}$
(2)$\frac{2}{3}{sin^2}β+cosβ•sinβ$=$\frac{2}{3}$×$\frac{1}{5}$-$\frac{\sqrt{5}}{5}×\frac{2\sqrt{5}}{5}$=-$\frac{1}{15}$.
点评 本题考查了同角三角函数关系式的计算和诱导公式的运用.属于基础题
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{12}{5}$ | B. | -$\frac{12}{5}$ | C. | $\frac{5}{12}$ | D. | -$\frac{5}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (1,4) | C. | (2,4) | D. | (4,16) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com