精英家教网 > 高中数学 > 题目详情
11.已知双曲线Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦距为2c,直线l:y=kx-kc.若k=$\sqrt{3}$,则l与Γ的左、右两支各有一个交点;若k=$\sqrt{15}$,则l与Γ的右支有两个不同的交点,则Γ的离心率的取值范围为(  )
A.(1,2)B.(1,4)C.(2,4)D.(4,16)

分析 由题意可知双曲线的渐近线斜率$\sqrt{3}$<$\frac{b}{a}$<$\sqrt{15}$,根据e=$\frac{c}{a}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$,即可求得Γ的离心率的取值范围.

解答 解:由题意可知:直线l:y=k(x-c)过焦点F(c,0).双曲线的渐近线方程y=$\frac{b}{a}$x,
可得双曲线的渐近线斜率$\sqrt{3}$<$\frac{b}{a}$<$\sqrt{15}$,
∵e=$\frac{c}{a}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$,
由3<$\frac{{b}^{2}}{{a}^{2}}$<15,4<1+$\frac{{b}^{2}}{{a}^{2}}$<16,
∴2<e<4,
∴双曲线离心率的取值范围为(2,4).
故选C.

点评 本题考查双曲线的离心率的范围,考查学生分析解决问题的能力,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列函数是偶函数的是(  )
A.y=tan3xB.y=cosxC.y=2sinx-1D.y=2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知直线l:y=x+m与圆C:x2+y2-2x+4y-4=0相交于A,B不同两点.
(1)求m的取值范围;
(2)设以AB为直径的圆经过原点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知β为第二象限角,且满足$\frac{{2{{tan}^2}β}}{3tanβ+2}=1$
(1)求$sin(β+\frac{3π}{2})$,
(2)$\frac{2}{3}{sin^2}β+cosβ•sinβ$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某工厂有A,B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件,耗时1h,每生产一件乙产品使用4个B配件,耗时2h,该厂每天最多可从配件厂获得24个A配件和16个B配件,每天生产总耗时不超过8h,若生产一件甲产品获利3万元,生产一件乙产品获利4万元,则通过恰当的生产安排,该工厂每天可获得的最大利润为22万元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.复数$\frac{4}{1-i}$-$\frac{10}{3+i}$的共轭复数对应的点所在象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若a-i与2+bi互为共轭复数,那么a+b等于(  )
A.3B.1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,三棱锥P-ABC中,D是BC的中点,△PAB为等边三角形,△ABC为等腰直角三角形,AB=AC=4,且二面角P-AB-D的余弦值为$\frac{\sqrt{3}}{3}$.
(Ⅰ)求证:平面ABC⊥平面PBC;
(Ⅱ)若点M是线段AP上一动点,点N为线段AB的四等分点(靠近B点),求直线NM与平面PAD所成角的余弦值的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线l1:(m+2)x-y+5=0与l2:(m+3)x+(18+m)y+2=0垂直,则实数m的值为(  )
A.2或4B.1或4C.1或2D.-6或2

查看答案和解析>>

同步练习册答案