分析 在△ABC中,由余弦定理可得AB,进而可求∠B,在△ACD中,由正弦定理可得CD的值.
解答 解:∵AC=$\sqrt{2}$,BC=$\sqrt{6}$,∠ACB=$\frac{π}{6}$![]()
在△ABC中,由余弦定理可得:
AB2═BC2+AC2-2BC•AC•cos∠ACB=2+6-2×$\sqrt{2}$×$\sqrt{6}$×$\frac{\sqrt{3}}{2}$=2,
∴AB=$\sqrt{2}$
∴∠B=∠ACB=$\frac{π}{6}$,
∴∠DAC=∠B+∠ACB=$\frac{π}{3}$,
在△ACD中,由正弦定理可得$\frac{AC}{sin∠ADC}$=$\frac{CD}{sin∠DAC}$,
∴CD=$\frac{\sqrt{2}×\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}}$=$\sqrt{3}$
故答案为:$\sqrt{3}$
点评 本题主要考查了余弦定理,正弦定理在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com