精英家教网 > 高中数学 > 题目详情
2.定义运算$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,若$z=|{\begin{array}{l}1&2\\ i&{i^4}\end{array}}|$(i为虚数单位),则复数$\bar z$在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用运算$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$化简、几何意义即可得出.

解答 解:$z=|{\begin{array}{l}1&2\\ i&{i^4}\end{array}}|$=i4-2i=1-2i,则复数$\bar z$在复平面上对应的点(1,-2)位于第四象限.
故选:D.

点评 本题考查了复数的运算法则、几何意义、新定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.如图所示是某市2017年4月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某同志随机选择4月1日至4月12日中的某一天到达该市,并停留3天.
该同志到达当日空气质量重度污染的概率$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设曲线f(x)=Asin(x+θ)(A>0)的一条对称轴为$x=\frac{π}{5}$,则曲线$y=f(\frac{π}{10}-x)$的一个对称点为(  )
A.$(\frac{π}{5},0)$B.$(\frac{2π}{5},0)$C.$(\frac{3π}{5},0)$D.$(\frac{4π}{5},0)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知圆C:x2+y2=4,直线l:y=x,则圆C上任取一点A到直线l的距离小于1的概率为(  )
A.$\frac{3}{4}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.由数字2,0,1,7组成没有重复数字的四位偶数的个数为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在△ABC中,∠C=90°,AC=BC=a,点P在边AB上,设$\overrightarrow{AP}$=λ$\overrightarrow{PB}$(λ>0),过点P作PE∥BC交AC于E,作PF∥AC交BC于F.沿PE将△APE翻折成△A′PE,使平面A′PE⊥平面ABC;沿PF将△BPF翻折成△B′PF,使平面B′PF⊥平面ABC.
(1)求证:B′C∥平面A′PE;
(2)是否存在正实数λ,使得二面角C-A′B′-P的大小为60°?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.($\sqrt{3}$-2x)7的展开式中,x3的系数是-2520(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{a}$=($\sqrt{3}$,-1),向量$\overrightarrow{b}$=(1+tcos$\frac{π}{5}$,tsin$\frac{π}{5}$)(t>0),则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角可能是(  )
A.$\frac{π}{9}$B.$\frac{5π}{18}$C.$\frac{7π}{18}$D.$\frac{11π}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知△ABC中,AC=$\sqrt{2}$,BC=$\sqrt{6}$,∠ACB=$\frac{π}{6}$,若线段BA的延长线上存在点D,使∠BDC=$\frac{π}{4}$,则CD=$\sqrt{3}$.

查看答案和解析>>

同步练习册答案