精英家教网 > 高中数学 > 题目详情
17.由数字2,0,1,7组成没有重复数字的四位偶数的个数为10.

分析 根据题意,分2种情况讨论:①、0在个位,②、2在个位,分别求出每种情况的四位偶数的个数,由分类计数原理计算可得答案.

解答 解:根据题意,要求的是四位偶数,则个位数字必须是0或2,
分2种情况分析:
①、0在个位,将2、1、7三个数字全排列,安排在前三位数字即可,
有A33=6个四位偶数,
②、2在个位,由于0不能在千位,则千位数字有2种情况,
将剩余的2个数字全排列,安排在百位、十位,有A22=2种情况,
则此时有2×2=4个四位偶数,
则一共有6+4=10个四位偶数,
故答案为:10.

点评 本题考查排列、组合的综合应用,注意四位偶数的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{sin\frac{π}{2}x(0≤x≤2)}\\{lo{g}_{2017}(x-1)(x>2)}\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是(  )
A.(4,2018)B.(4,2020)C.(3,2020)D.(2,2020)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{bn}满足$\frac{b_1}{2}+\frac{b_2}{2^2}+\frac{b_n}{2^3}+…+\frac{b_n}{2^n}=n({n∈{N^*}})$,${b_n}={2^{{a_n}-1}}$,则数列$\left\{{\frac{a_n}{b_n}}\right\}$的前7项和S7=$\frac{187}{64}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列有关结论正确的个数为(  )
①小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A=“4个人去的景点不相同”,事件B=“小赵独自去一个景点”,则$P=({A|B})=\frac{2}{9}$;
②设函数f(x)存在导数且满足$\lim_{△x→∞}\frac{{f(2)-f({2-3△x})}}{3△x}=-1$,则曲线y=f(x)在点(2,f(2))处的切线斜率为-1;
③设随机变量ξ服从正态分布N(μ,7),若P(ξ<2)=P(ξ>4),则μ与Dξ的值分别为μ=3,Dξ=7.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若二项式${({{x^2}-\frac{2}{x}})^n}$展开式的二项式系数之和为8,则该展开式的系数之和为(  )
A.-1B.1C.27D.-27

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义运算$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,若$z=|{\begin{array}{l}1&2\\ i&{i^4}\end{array}}|$(i为虚数单位),则复数$\bar z$在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若实数a,b,c满足2a=$\frac{1}{a}$,log2b=$\frac{1}{b}$,lnc=$\frac{1}{c}$,则(  )
A.a<c<bB.a<b<cC.b<c<aD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数f(x)的定义域为D,如果存在正实数k,使得对于任意x∈D,都有x+k∈D.且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k的型增函数”,己知f(x)是定义在R上的奇函数.且在x>0时.f(x)=|x-a|-2a,若f(x)为R上的“2017的型增函数”,则实数a的取值范围是(-∞,$\frac{2017}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知点M是半径为4的圆C内的一个定点,点P是圆C上的一个动点,线段MP的垂直平分线l与半径CP相交于点Q,则|CQ|•|QM|的最大值为4.

查看答案和解析>>

同步练习册答案