精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=$\left\{\begin{array}{l}{sin\frac{π}{2}x(0≤x≤2)}\\{lo{g}_{2017}(x-1)(x>2)}\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是(  )
A.(4,2018)B.(4,2020)C.(3,2020)D.(2,2020)

分析 根据题意,在坐标系里作出函数f(x)的图象,根据f(a)=f(b)=f(c),确定a,b,c的大小,即可得出a+b+c的取值范围

解答 解:作出函数的图象如图,直线y=m交函数图象于如图,

不妨设a<b<c,
由正弦曲线的对称性,可得(a,m)与(b,m)关于直线x=1对称,
因此a+b=2.
当直线y=m=1时,由log2017(x-1)=1,
解得x-1=2017,即x=2018,
∴若满足f(a)=f(b)=f(c),(a、b、c互不相等),
由a<b<c可得2<c<2018,
因此可得4<a+b+c<2020,
即a+b+c∈(4,2020),
故选:B

点评 本题以三角函数和对数函数为例,考查了函数的零点与方程根个数讨论等知识点,利用数形结合,观察图象的变化,从而得出变量的取值范围是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若$\int_0^x{{a^2}da={x^2}}$(x>0),则$\int_1^x{|{a-2}|da=}$1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$sin2α=\frac{3}{4}$,则$tanα+\frac{1}{tanα}$=(  )
A.$\frac{8}{3}$B.$\frac{10}{3}$C.$\frac{11}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若圆x2+y2-3x-4y-5=0关于直线ax-by=0(a>0,b>0)对称,则双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为(  )
A.$\frac{4}{3}$B.$\frac{5}{3}$C.$\frac{5}{4}$D.$\frac{7}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.满足A=60°,a=2$\sqrt{3}$,b=4的△ABC的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图所示是某市2017年4月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某同志随机选择4月1日至4月12日中的某一天到达该市,并停留3天.
该同志到达当日空气质量重度污染的概率$\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,内角A,B,C的对边分别为a,b,c,向量$m=(\frac{1}{2}cosA,\frac{1}{2}cosC)$,n=(c,a),且m∥n,则△ABC为等腰或直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.△ABC的三个内角A,B,C所对的边分别为a,b,c,asinAsinB+bcos2A=2a,则角A的最大值是$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.由数字2,0,1,7组成没有重复数字的四位偶数的个数为10.

查看答案和解析>>

同步练习册答案