精英家教网 > 高中数学 > 题目详情
12.如图所示是某市2017年4月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某同志随机选择4月1日至4月12日中的某一天到达该市,并停留3天.
该同志到达当日空气质量重度污染的概率$\frac{5}{12}$.

分析 先求出基本事件总数n=12,再求出该同志到达当日空气质量重度污染包含的基本事件个数m=5,由此能求出该同志到达当日空气质量重度污染的概率.

解答 解:某同志随机选择4月1日至4月12日中的某一天到达该市,并停留3天.
基本事件总数n=12,
4月1日至4月12日空气质量重度污染的天数有5天,
即该同志到达当日空气质量重度污染包含的基本事件个数m=5,
∴该同志到达当日空气质量重度污染的概率p=$\frac{m}{n}=\frac{5}{12}$.
故答案为:$\frac{5}{12}$.

点评 本题考查等可能事件的概率计算,涉及到折线图、列举法的运用,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.当x∈(0,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是[-6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.点M(x,y)是不等式组$\left\{{\begin{array}{l}{0≤x≤\sqrt{3}}\\{y≤3}\\{x≤\sqrt{3}y}\end{array}}\right.$表示的平面区域Ω内的一动点,且不等式2x-y+m≤0恒成立,则m的取值范围是$m≤1-2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=cos($\frac{2π}{3}$x)+(a-1)sin($\frac{π}{3}$x)+a,g(x)=3x-x,若f(g(x))≤0对任意的x∈[0,1]恒成立,则实数a的取值范围是(  )
A.(-∞,$\sqrt{3}$-1]B.(-∞,0]C.[0,$\sqrt{3}$-1]D.(-∞,1-$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{sin\frac{π}{2}x(0≤x≤2)}\\{lo{g}_{2017}(x-1)(x>2)}\end{array}\right.$,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是(  )
A.(4,2018)B.(4,2020)C.(3,2020)D.(2,2020)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知x,y满足:$\left\{{\begin{array}{l}{x≥0}\\{x+y≤2}\\{x-y≤0}\end{array}}\right.$,若目标函数z=ax+y取最大值时的最优解有无数多个,则实数a的值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若二次函数f(x)=m2x2+nx+2的图象与x轴有交点,则双曲线$\frac{x^2}{m^2}-\frac{y^2}{n^2}=1$(m>0,n>0)离心率e的取值范围为(  )
A.(1,3]B.[3,+∞)C.$(1,\frac{{3\sqrt{2}}}{4}]$D.$[\frac{{3\sqrt{2}}}{4},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.对于函数f(x),若存在一个区间A=[a,b],使得{y|y=f(x),x∈A}=A,则称A为f(x)的一个稳定区间,相应的函数f(x)为“局部稳定函数”,给出下列四个函数:①f(x)=tan$\frac{π}{4}$x;②f(x)=1-x2;③f(x)=ex-1;④f(x)=ln(x-1),所有“局部稳定函数”的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义运算$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,若$z=|{\begin{array}{l}1&2\\ i&{i^4}\end{array}}|$(i为虚数单位),则复数$\bar z$在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案