分析 先求出数列{bn}的通项公式,再根据错位相减法求和即可.
解答 解:当n=1时,$\frac{{b}_{1}}{2}$=1,即b1=2,
∵$\frac{b_1}{2}+\frac{b_2}{2^2}+\frac{b_n}{2^3}+…+\frac{b_n}{2^n}=n({n∈{N^*}})$,①,
当n≥2时,
$\frac{{b}_{1}}{2}$+$\frac{{b}_{2}}{{2}^{2}}$+…+$\frac{{b}_{n}-1}{{2}^{n-1}}$=n-1,②,
由①-②可得$\frac{{b}_{n}}{{2}^{n}}$=1,
∴bn=2n,
当n=1时,成立,
∴bn=2n,
${b_n}={2^{{a_n}-1}}$=2n.
∴an-1=n
∴an=n+1,
∴$\frac{{a}_{n}}{{b}_{n}}$=$\frac{n+1}{{2}^{n}}$,
设数列$\left\{{\frac{a_n}{b_n}}\right\}$的前n项和Sn,
∴Sn=2×($\frac{1}{2}$)1+3×($\frac{1}{2}$)2+…+n×($\frac{1}{2}$)n-1+(n+1)×($\frac{1}{2}$)n,①
$\frac{1}{2}$Sn=2×($\frac{1}{2}$)2+3×($\frac{1}{2}$)3+…+n×($\frac{1}{2}$)n+(n+1)×($\frac{1}{2}$)n+1,②
由①-②可得
$\frac{1}{2}$Sn=$\frac{1}{2}$$+\frac{1}{2}$+($\frac{1}{2}$)2+($\frac{1}{2}$)3+…+($\frac{1}{2}$)n-(n+1)×($\frac{1}{2}$)n+1
=$\frac{1}{2}$+$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-(n+1)×($\frac{1}{2}$)n+1=$\frac{1}{2}$+1-($\frac{1}{2}$)n-(n+1)×($\frac{1}{2}$)n+1
=$\frac{3}{2}$-$\frac{n+3}{2}$×($\frac{1}{2}$)n,
∴Sn=3-$\frac{n+3}{{2}^{n}}$,
∴S7=3-$\frac{10}{{2}^{7}}$=$\frac{187}{64}$,
故答案为:$\frac{187}{64}$
点评 本题考查了数列的递推公式和数列的通项公式的求法和错位相减法求和,属于中档题
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{3}$ | B. | $\frac{10}{3}$ | C. | $\frac{11}{3}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 10 | C. | 5 | D. | 55 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{π}{5},0)$ | B. | $(\frac{2π}{5},0)$ | C. | $(\frac{3π}{5},0)$ | D. | $(\frac{4π}{5},0)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com