精英家教网 > 高中数学 > 题目详情
8.已知数列{bn}满足$\frac{b_1}{2}+\frac{b_2}{2^2}+\frac{b_n}{2^3}+…+\frac{b_n}{2^n}=n({n∈{N^*}})$,${b_n}={2^{{a_n}-1}}$,则数列$\left\{{\frac{a_n}{b_n}}\right\}$的前7项和S7=$\frac{187}{64}$.

分析 先求出数列{bn}的通项公式,再根据错位相减法求和即可.

解答 解:当n=1时,$\frac{{b}_{1}}{2}$=1,即b1=2,
∵$\frac{b_1}{2}+\frac{b_2}{2^2}+\frac{b_n}{2^3}+…+\frac{b_n}{2^n}=n({n∈{N^*}})$,①,
当n≥2时,
$\frac{{b}_{1}}{2}$+$\frac{{b}_{2}}{{2}^{2}}$+…+$\frac{{b}_{n}-1}{{2}^{n-1}}$=n-1,②,
由①-②可得$\frac{{b}_{n}}{{2}^{n}}$=1,
∴bn=2n
当n=1时,成立,
∴bn=2n
${b_n}={2^{{a_n}-1}}$=2n
∴an-1=n
∴an=n+1,
∴$\frac{{a}_{n}}{{b}_{n}}$=$\frac{n+1}{{2}^{n}}$,
设数列$\left\{{\frac{a_n}{b_n}}\right\}$的前n项和Sn
∴Sn=2×($\frac{1}{2}$)1+3×($\frac{1}{2}$)2+…+n×($\frac{1}{2}$)n-1+(n+1)×($\frac{1}{2}$)n,①
$\frac{1}{2}$Sn=2×($\frac{1}{2}$)2+3×($\frac{1}{2}$)3+…+n×($\frac{1}{2}$)n+(n+1)×($\frac{1}{2}$)n+1,②
由①-②可得
$\frac{1}{2}$Sn=$\frac{1}{2}$$+\frac{1}{2}$+($\frac{1}{2}$)2+($\frac{1}{2}$)3+…+($\frac{1}{2}$)n-(n+1)×($\frac{1}{2}$)n+1
=$\frac{1}{2}$+$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-(n+1)×($\frac{1}{2}$)n+1=$\frac{1}{2}$+1-($\frac{1}{2}$)n-(n+1)×($\frac{1}{2}$)n+1
=$\frac{3}{2}$-$\frac{n+3}{2}$×($\frac{1}{2}$)n
∴Sn=3-$\frac{n+3}{{2}^{n}}$,
∴S7=3-$\frac{10}{{2}^{7}}$=$\frac{187}{64}$,
故答案为:$\frac{187}{64}$

点评 本题考查了数列的递推公式和数列的通项公式的求法和错位相减法求和,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知$sin2α=\frac{3}{4}$,则$tanα+\frac{1}{tanα}$=(  )
A.$\frac{8}{3}$B.$\frac{10}{3}$C.$\frac{11}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,内角A,B,C的对边分别为a,b,c,向量$m=(\frac{1}{2}cosA,\frac{1}{2}cosC)$,n=(c,a),且m∥n,则△ABC为等腰或直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.△ABC的三个内角A,B,C所对的边分别为a,b,c,asinAsinB+bcos2A=2a,则角A的最大值是$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图的程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“aMODb”表示a除以b的余数),若输入的a,b分别为485,270,则输出的b=(  )
A.0B.10C.5D.55

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设曲线f(x)=Asin(x+θ)(A>0)的一条对称轴为$x=\frac{π}{5}$,则曲线$y=f(\frac{π}{10}-x)$的一个对称点为(  )
A.$(\frac{π}{5},0)$B.$(\frac{2π}{5},0)$C.$(\frac{3π}{5},0)$D.$(\frac{4π}{5},0)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.从3双不同的鞋中任取2只,则取出的2只鞋不能成双的概率为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.由数字2,0,1,7组成没有重复数字的四位偶数的个数为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x-a|(a∈R).
(1)当a=2时,解不等式|x-$\frac{1}{3}$|+$\frac{1}{3}$f(x)≥1;
(2)若不等式|x-$\frac{1}{3}$|+$\frac{1}{3}$f(x)≤x的解集包含[$\frac{1}{3}$,$\frac{1}{2}$],求实数a的取值范围.

查看答案和解析>>

同步练习册答案