精英家教网 > 高中数学 > 题目详情
16.已知角$\frac{π}{3}$的终边上有一点P(1,a),则a的值是(  )
A.$-\sqrt{3}$B.$±\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\sqrt{3}$

分析 根据三角函数的坐标定义,利用正切函数的定义建立方程关系进行求解即可.

解答 解:∵角$\frac{π}{3}$的终边上有一点P(1,a),
∴tan$\frac{π}{3}$=$\frac{a}{1}$=a,
则a=$\sqrt{3}$,
故选:D.

点评 本题主要考查三角函数的定义,利用正切公式建立方程关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.在正棱柱ABC-A1B1C1中,M为△A1B1C1的重心,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,$\overrightarrow{A{A}_{1}}$=$\overrightarrow{c}$,则$\overrightarrow{A{C}_{1}}$=$\overrightarrow{b}+\overrightarrow{c}$,$\overrightarrow{CM}$=$\overrightarrow{c}+\frac{\overrightarrow{a}}{3}-\frac{2\overrightarrow{b}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+ax+b(a,b是实数),g(x)=2x2-4x-16
(1)求不等式g(x)<0的解集?
(2)若|f(x)|≤|g(x)|对任意的实数都成立,求a,b?
(3)在(2)的条件下,若对一切x>2,均有f(x)≥(m+2)x-m-15成立,求实数m的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.康杰中学高三数学学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,在全市高三年级学生中随机抽取100名同学的上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有16人,语文成绩优秀但外语不优秀的有14人,外语成绩优秀但语文不优秀的有10人.
(1)根据以上信息,完成下面2×2列联表:
语文优秀语文不优秀总计
外语优秀1610
外语不优秀14
总计
(2)能否判定在犯错误概率不超过0.001的前提下认为全市高三年级学生的“语文成绩与外语成绩有关系”?
(3)将上述调查所得到的频率视为概率,从全市高三年级学生成绩中,随机抽取3名学生的成绩,记抽取的3名学生成绩中语文、外语两科成绩至少有一科优秀的个数为X,求X的分布列和期望E(X).
p(K2≥k00.0100.0050.001
k06.6357.87910.828
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
其中:n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知直线l1:x+2y-5=0与直线l2:mx-ny+5=0(n∈Z)相互垂直,点(2,5)到圆C:(x-m)2+(y-n)2=1的最短距离为3,则mn=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C的圆心在直线4x+y=0上,且与直线x+y-1=0相切于点P(3,-2).
(1)求圆C的方程;
(2)过圆内一点P(2,-3)的直线l与圆交于A、B两点,求弦长AB的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1+x),x≥0}\\{lo{g}_{\frac{1}{2}}(1-x),x<0}\end{array}\right.$.
(1)判断函数f(x)的奇偶性;
(2)对任意的两个实数x1,x2,求证:当x1+x2>0时,f(x1)+f(x2)>0;
(3)对任何实数x,f(e2x-a)+f(3-2ex)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.二进制数110011(2)化为十进制数为(  )
A.51B.52C.25223D.25004

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.当今信息时代,众多高中生也配上了手机.某校为研究经常使用手机是否对学习成绩有影响,随机抽取高三年级50名理科生的一次数学周练成绩,并制成下面的2×2列联表:
及格不及格合计
很少使用手机20626
经常使用手机101424
合计302050
(1)判断是否有97.5%的把握认为经常使用手机对学习成绩有影响?
(2)从这50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数学题,甲、乙独立解出此题的概率分别为P1,P2,且P2=0.5,若|P1-P2|≥0.4,则此二人适合结为学习上互帮互助的“学习师徒”,记X为两人中解出此题的人数,若X的数学期望E(X)=1.4,问两人是否适合结为“学习师徒”?
参考公式及数据:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥K00.100.050.0250.010
K02.7063.8415.0246.635

查看答案和解析>>

同步练习册答案