精英家教网 > 高中数学 > 题目详情
αβ是两个不同的平面,mn是平面αβ之外的两条不同直线,给出四个论断:①mn,②αβ,③nβ,④mα.以其中三个论断作为条件,余下的一个论断作为结论,写出你认为正确的一个命题,并证明它.
mαnβαβmn(或mnmαnβαβ
证明如下:过不在αβ内的任一点P,作PMmPNn
PMPN作平面rαMQ,交βNQ

同理PNNQ
因此∠MPN+∠MQN = 180°,
故∠MQN = 90°MPN = 90°
αβmn
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥的底面是边长为1的正方形,点是棱的中点。
(1)求证
(2)求异面直线所成的角的大小;
(3)求面与面所成二面角的大小。
(第18题图)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线,且直线都相交,求证:直线共面。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD是边长为1的正方形,
,且MD=NB=1,E为BC的中点
1.                  求异面直线NE与AM所成角的余弦值
2.                  在线段AN上是否存在点S,使得ES平面AMN?若存在,求线段AS的长;若不存在,请说明理由
                                 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图4,正三棱柱中,分别是侧棱上的点,且使得折线的长最短.
(1)证明:平面平面;(2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在四棱锥中,, .⑴求证平面
⑵试求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分14分)在斜四棱柱中,已知底面是边长为4的菱形,,且点在面上的射影是底面对角线AC的交点O,设点E的中点,
(Ⅰ) 求证:四边形是矩形;
(Ⅱ) 求二面角的大小;
  (Ⅲ) 求四面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,矩形中,上的点,且.
(Ⅰ)求证:;(Ⅱ)求证;
(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点在同一个球面上, 平面,若
,则两点间的球面距离是            

查看答案和解析>>

同步练习册答案