精英家教网 > 高中数学 > 题目详情

【题目】已知四棱锥P﹣ABCD,底面ABCD是直角梯形,AD∥BC,∠BCD=90°,PA⊥底面ABCD,△ABM是边长为2的等边三角形,
(Ⅰ)求证:平面PAM⊥平面PDM;
(Ⅱ)若点E为PC中点,求二面角P﹣MD﹣E的余弦值.

【答案】解:(Ⅰ)证明:∵△ABM是边长为2的等边三角形,底面ABCD是直角梯形,∴ , 又 ,∴CM=3,∴AD=3+1=4,∴AD2=DM2+AM2 , ∴DM⊥AM.
又PA⊥底面ABCD,∴DM⊥PA,∴DM⊥平面PAM,
∵DM平面PDM,∴平面PAM⊥平面PDM.
(Ⅱ)以D为原点,DC所在直线为x轴,DA所在直线为y轴,
过D且与PA平行的直线为z轴,建立空间直角坐标系D﹣xyz,


设平面PMD的法向量为

取x1=3,∴
∵E为PC中点,则
设平面MDE的法向量为
,取x2=3,∴

∴二面角P﹣MD﹣E的余弦值为
【解析】(Ⅰ)证明DM⊥AM.DM⊥PA,推出DM⊥平面PAM,即可证明平面PAM⊥平面PDM.(Ⅱ)以D为原点,DC所在直线为x轴,DA所在直线为y轴,过D且与PA平行的直线为z轴,建立空间直角坐标系D﹣xyz,求出平面PMD的法向量,平面MDE的法向量,利用向量的 数量积求解二面角P﹣MD﹣E的余弦值.
【考点精析】通过灵活运用平面与平面垂直的判定,掌握一个平面过另一个平面的垂线,则这两个平面垂直即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.
附:K2=
(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A,B,C是椭圆C: (a>b>0)上的三点,其中点A的坐标为(2,0),BC过椭圆的中心,且·=0,||=2||

(1)求椭圆C的方程;

(2)过点(0,t)的直线l(斜率存在)与椭圆C交于P,Q两点,设D为椭圆C与y轴负半轴的交点,且||=||,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位: )和年利润(单位:千元)的影响.对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.

表中.

(1)根据散点图判断哪一个适宜作为年销售量关于年宣传费的回归类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立关于的回归方程;

(3)已知这种产品的利润的的关系为.根据(2)的结果回答下列问题:

(ⅰ)年宣传费时,年销售量及年利润的预报值是多少?

(ⅱ)年宣传费为何值时,年利润的预报值最大?

附:对于一组数据,其回归直线的的斜率和截距的最小二乘估计为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列叙述: ①若α,β均为第一象限,且α>β,则sinα>sinβ
②函数f(x)=sin(2x﹣ )在区间[0, ]上是增函数;
③函数f(x)=cos(2x+ )的一个对称中心为(﹣ ,0)
④记min{a,b}= ,若函数f(x)=min{sinx,cosx},则f(x)的值域为[﹣1, ].
其是叙述正确的是(请填上序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在中,斜边,将沿直线旋转得到,设二面角的大小为.

(1)取的中点,过点的平面与分别交于点,当平面平面时,求的长(2)当时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是(
A.“x<﹣1”是“x2﹣x﹣2>0”的必要不充分条件
B.“P且Q”为假,则P假且 Q假
C.命题“ax2﹣2ax+3>0恒成立”是真命题,则实数a的取值范围是0≤a<3
D.命题“若x2﹣3x+2=0,则x=2”的否命题为“若x2﹣3x+2=0,则x≠2”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示,下列说法正确的是(
A.f(x)的图象关于直线x=﹣ 对称
B.函数f(x)在[﹣ ,0]上单调递增
C.f(x)的图象关于点(﹣ ,0)对称
D.将函数y=2sin(2x﹣ )的图象向左平移 个单位得到f(x)的图象

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求曲线在点处的切线方程;

(2)求函数的单调区间;

(3)设函数.若对于任意,都有成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案