精英家教网 > 高中数学 > 题目详情
设a∈R,函数f(x)=x3-x2-x+a,求f(x)的单调区间.
考点:利用导数研究函数的单调性
专题:导数的概念及应用
分析:先求出函数的导数,解不等式从而求出函数的单调区间.
解答: 解:∵f′(x)=3x2-2x-1,
令f′(x)>0,解得:x>1,或x<-
1
3

令f′(x)<0,解得:-
1
3
<x<1,
∴f(x)在(-∞,-
1
3
),(1,+∞)递增,在(-
1
3
,1)递减.
点评:本题考察了函数的单调性,导数的应用,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有一杯糖水,重b克,其中含糖a克,现在向糖水中再加m克糖,此时糖水变得更甜了.(其中a,b,m∈R+).
(1)请从上面事例中提炼出一个不等式(要求:①使用题目中字母;②标明字母应满足条件)
(2)利用你学过的证明方法对提炼出的不等式进行证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=5,a5+a6+a7=39.
(1)求数列{an}的通项公式;
(2)设bn=
4
(an-1)(an+1)
 (n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种成本为20元/件的新型商品在第x天销售的相关信息如下表所示:
销售量P(件)p=50-x
销售单价q(元/件)当1≤x≤20时,q=30+
1
2
x;
当21≤x≤40时,q=20+
525
x
(1)请计算第几天该商品的销售单价为35元/件?
(2)求该网店第x天获得的利润y关于x的函数关系式;
(3)这40天中该网店第几天获得的利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.
(1)求证:AB∥平面DEG;
(2)求异面直线BD与CF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-lnx,g(x)=
lnx
x
,它们的定义域都是(0,e].(e≈2.718)
(1)当a=1时,求函数f(x)的最小值;
(2)当a=1时,求证:f(m)>g(n)+
17
27
对一切m,n∈(0,e]恒成立;
(3)是否存在实数a,使得f(x)的最小值是3?如果存在,求出a的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,a10=12,a25=-18,Sn表示前n项和,求:
(1)求Sn
(2)求Tn=|a1|+|a2|+|a3|+…+|an|的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

用数字1,2,3,4可以排成没有重复数字的四位偶数,共有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x3-3x2+1的递增区间是
 

查看答案和解析>>

同步练习册答案