分析 (Ⅰ)连结AC,利用线面垂直的判定定理证明CD⊥平面PAE,即可证明:平面PAE⊥平面PCD;
(Ⅱ)作AF⊥PE于F,证明AF⊥平面PCD,即可求点A到平面PCD的距离.
解答
(Ⅰ)证明:连结AC,AB=$\sqrt{3}$,BC=1,∠ABC=90°
可得AC=2,所以AD=AC,
又E为CD的中点,
所以AE⊥CD,------------------------------------------(2分)
因为PA⊥平面ABCD,CD?平面ABCD
所以PA⊥CD,
又AE∩PA=A,故CD⊥平面PAE,----------------------------(5分)
而CD?平面PCD,故平面PAE⊥平面PCD-----------(6分)
(Ⅱ)解:作AF⊥PE于F,
由(Ⅰ)可知,CD⊥平面PAE,所以CD⊥AF.
又CD∩PE=E,故AF⊥平面PCD
∴AF为点A到平面PCD的距离----------------------------(9分)
由AD=2,AB=$\sqrt{3}$,BC=1,∠ABC=90°.
可得CD=2
因此AC=AD=CD=2,所以AE=$\sqrt{3}$.
又PA⊥平面ABCD,所以PA⊥AE.
而PA=AE=$\sqrt{3}$,因此PE=$\sqrt{6}$,
所以AF=$\frac{1}{2}$PE=$\frac{\sqrt{6}}{2}$.
故A到平面PCD的距离为$\frac{\sqrt{6}}{2}$--------------------------------------------------------(12分)
点评 考查线面垂直的判定和性质定理,点到面的距离,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{1}{2}$) | B. | ($\frac{1}{2}$,+∞) | C. | (-1,$\frac{1}{2}$) | D. | ($\frac{1}{2}$,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{3}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{140}$ | B. | $\frac{1}{105}$ | C. | $\frac{1}{60}$ | D. | $\frac{1}{42}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com