精英家教网 > 高中数学 > 题目详情
19.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n行有n个数且两端的数均为$\frac{1}{n}$(n≥2),并且相邻两行数之间有一定的关系,则第7行第4个数(从左往右数)为(  )
A.$\frac{1}{140}$B.$\frac{1}{105}$C.$\frac{1}{60}$D.$\frac{1}{42}$

分析 根据每个数是它下一行左右相邻两数的和,先求出第5,6,7三行的第2个数,再求出6,7两行的第3个数,求出第7行的第4个数.

解答 解:设第n行第m个数为a(n,m),
由题意知a(6,1)=$\frac{1}{6}$,a(7,1)=$\frac{1}{7}$,
∴a(7,2)=a(6,1)-a(7,1)=$\frac{1}{6}$-$\frac{1}{7}$=$\frac{1}{42}$,
a(6,2)=a(5,1)-a(6,1)=$\frac{1}{5}$-$\frac{1}{6}$=$\frac{1}{30}$,
a(7,3)=a(6,2)-a(7,2)=$\frac{1}{30}$-$\frac{1}{42}$=$\frac{1}{105}$,
a(6,3)=a(5,2)-a(6,2)=$\frac{1}{20}$-$\frac{1}{30}$=$\frac{1}{60}$,
∴a(7,4)=a(6,3)-a(7,3)=$\frac{1}{60}$-$\frac{1}{105}$=$\frac{1}{140}$.
故选A.

点评 本题考查通过观察归纳出各数的关系,考差了学生的观察能力和计算能力,属于中档题,解题时要认真审题,仔细解答,避免错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为梯形,AD∥BC,∠ABC=∠BAD=90°,AD=2BC=2,PA=AB=$\sqrt{3}$,E为CD中点.
(Ⅰ)求证:平面PAE⊥平面PCD;
(Ⅱ)求点A到平面PCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=logax(a>0,且a≠1)与y=log${\;}_{\frac{1}{a}}$x(a>0,且a≠1)的图象关于x轴对称.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,面PAB⊥底面ABCD,PB=1,且∠PBA=60°
(1)求证:面PAD⊥面PBD;
(2)求二面角C-PB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位,已知圆C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),直线l的极坐标方程为ρ=$\frac{4}{sinθ+cosθ}$,点P在l上.
(1)过P向圆C引切线,切点为F,求|PF|的最小值;
(2)射线OP交圆C于R,点Q在OP上,且满足|OP|2=|OQ|•|OR|,求Q点轨迹的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=$\frac{1}{2}$AB=2.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到如图2所示的几何体D-ABC
(Ⅰ)求证:AD⊥平面BCD;
(Ⅱ)求点C到平面ABD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.极坐标系中,点A(1,$\frac{π}{6}$),B(3,$\frac{5π}{6}$)之间的距离是(  )
A.$\sqrt{10}$B.$\sqrt{7}$C.$\sqrt{13}$D.$\sqrt{10+3\sqrt{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.观察式子:
1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$,
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$,
…,
则可归纳出一般式子为(  )
A.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{1}{2n-1}$ (n≥2)B.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<<$\frac{2n+1}{n}$ (n≥2)
C.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<$\frac{2n-1}{n}$ (n≥2)D.1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<<$\frac{2n}{2n+1}$ (n≥2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=|3x-2|-b有两个零点,则实数b的取值范围是0<b<2..

查看答案和解析>>

同步练习册答案