精英家教网 > 高中数学 > 题目详情
11.如图,在D是直角△ABC斜边BC上一点,$AC=\sqrt{3}DC$.
(Ⅰ)若∠DAC=30°,求角B的大小;
(Ⅱ)若BD=2DC,且AD=4,求DC的长.

分析 (Ⅰ)利用正弦定理,三角形的内角和定理,即可求出∠B的值;
(Ⅱ)设DC=x,表示出BD、BC和AC,利用余弦定理列方程求出DC的值.

解答 解:(Ⅰ)△ABC中,根据正弦定理,
$\frac{AC}{sin∠ADC}=\frac{DC}{sin∠DAC}$,
因为$AC=\sqrt{3}DC$,
所以$sin∠ADC=\sqrt{3}sin∠DAC=\frac{{\sqrt{3}}}{2}$;
又∠ADC=∠B+∠BAD=∠B+60°>60°,
所以∠ADC=120°;
所以∠C=180°-120°-30°=30°,
所以∠B=60°;
(Ⅱ)设DC=x,则BD=2x,BC=3x,$AC=\sqrt{3}x$;
∴$sinB=\frac{AC}{BC}=\frac{{\sqrt{3}}}{3}$,$cosB=\frac{{\sqrt{6}}}{3}$,$AB=\sqrt{6}x$;
在△ABC中,由余弦定理,得:
AD2=AB2+BD2-2AB•BDcosB,
即${4^2}=6{x^2}+4{x^2}-2×\sqrt{6}x×2x×\frac{{\sqrt{6}}}{3}=2{x^2}$,
解得$x=2\sqrt{2}$,即$DC=2\sqrt{2}$.

点评 本题考查了正弦、余弦定理的应用问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知不等式|2x-a|≤3的解集为[-1,2].
(Ⅰ)求a的值;
(Ⅱ)若|x-m|<a,求证:|x|<|m|+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图是某几何体挖去一部分后得到的三视图,其中主视图和左视图相同都是一个等腰梯形及它的内切圆,俯视图中有两个边长分别为2和8的正方形且图中的圆与主视图圆大小相等并且圆心为两个正方形的中心.问该几何体的体积是(  )
A.$\frac{420-32π}{3}$B.$\frac{336-32π}{3}$C.$\frac{168-4π}{3}$D.$\frac{168\sqrt{2}-64\sqrt{2}π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.角α的终边在第三象限,那么$\frac{α}{3}$的终边不可能在的象限是第(  )象限.
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若复数z满足(1+2i)2z=1+z,则其共轭复数$\overline{z}$为(  )
A.$\frac{1}{8}$+$\frac{1}{8}$iB.-$\frac{1}{8}$-$\frac{1}{8}$iC.-$\frac{1}{8}$+$\frac{1}{8}$iD.$\frac{1}{8}$-$\frac{1}{8}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在Rt△ABC中,∠C=90°,AC=4,则$\overrightarrow{AB}$•$\overrightarrow{CA}$等于(  )
A.-16B.-8C.16D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.因为指数函数y=ax是增函数,而y=($\frac{1}{2}$)x是指数函数,所以y=($\frac{1}{2}$)x是增函数关于上面推理正确的说法是(  )
A.推理的形式错误B.大前提是错误的C.小前提是错误的D.结论是正确的

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.独立性检验中,假设H0:变量X与变量Y没有关系,则在H0成立的情况下,P(K2≥6.635)≈0.010表示的意义是(  )
A.变量X与变量Y有关系的概率为1%
B.变量X与变量Y有关系的概率为99.9%
C.变量X与变量Y没有关系的概率为99%
D.变量X与变量Y有关系的概率为99%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若x,y满足约束条件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,则$\frac{y-1}{x}$的取值范围为(  )
A.[0,$\frac{1}{2}$]B.[$\frac{1}{2}$,1]C.[0,2]D.[1,2]

查看答案和解析>>

同步练习册答案