精英家教网 > 高中数学 > 题目详情

(本小题满分10分)选修4-1:几何证明选讲
如图,ABCD四点在同一圆上,的延长线交于点,点的延长线上.

(Ⅰ)若,求的值;
(Ⅱ)若,证明:

(1)要证明线段的比例关系,只要结合三角形相似,以及四点共圆的性质得到证明。
(2)根据上一问以及,要证明平行,则利用角相等来证明。

解析试题分析:证明:(Ⅰ)四点共圆,


.  ..........5分
(II)
 , 又

四点共圆,
, .  ..........10分
考点:几何证明的运用
点评:解决该试题的关键是杜宇平行的证明,一般要通过角相等,或者利用相似比来求解比值,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,的切线,过圆心的直径,相交于两点,连结. (1) 求证:
(2) 求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

切线与圆切于点,圆内有一点满足的平分线交圆于,延长交圆于,延长交圆于,连接

(Ⅰ)证明://
(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在边长为1的等边△ABC中,DE分别为边ABAC上的点,若A关于直线DE的对称点A1恰好在线段BC上,

(1)①设A1Bx,用x表示AD;②设∠A1ABθ∈[0º,60º],用θ表示AD
(2)求AD长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
如图,已知与圆相切于点,经过点的割线交圆于点,的平分线分别交于点

(Ⅰ)证明:=
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
如图,四边形ACBD内接于圆O,对角线AC与BD相交于M,AC⊥BD,E是DC中点连结EM交AB于F,作OH⊥AB于HH,

求证:(1)EF⊥AB         (2)OH=ME

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)选修41:几何证明选讲
如图,相交于A、B两点,AB是的直径,过A点作的切线交于点E,并与BO1的延长线交于点P,PB分别与交于C,D两点.
求证:(1)PA·PD=PE·PC; (2)AD=AE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知:如右图,在等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线DE,交BA的延长线于点E.

求证:(1)△ABC≌△DCB
(2)DE·DC=AE·BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本大题10分)
如图,为⊙的直径,切⊙于点交⊙于点,点上.求证:是⊙的切线.

查看答案和解析>>

同步练习册答案