精英家教网 > 高中数学 > 题目详情

如图,在边长为1的等边△ABC中,DE分别为边ABAC上的点,若A关于直线DE的对称点A1恰好在线段BC上,

(1)①设A1Bx,用x表示AD;②设∠A1ABθ∈[0º,60º],用θ表示AD
(2)求AD长度的最小值.

(1) y (0≤x≤1), AD·  θ∈[0º,60º]
(2) AD长度的最小值为2-3 当且仅当时取得最小值.

解析试题分析:(1)设A1BxADy,在△A1BD中,BD=1-yA1DADy,有余弦定理得
y2=(1-y)2x2-2x(1-y)cos60º=(1-y)2x2xxyx2xxy-2y+1=0
y (0≤x≤1),
设∠A1ABθ∈[0º,60º],则在△A1BA中,由正弦定理得:
 ∴AA1
AD·     θ∈[0º,60º]
(2)y (0≤x≤1),令t=2-x∈[1,2]∴yt-3≥2-3
当且仅当t,即x=2-时等号成立.AD长度的最小值为2-3.
AD·    θ∈[0º,60º]
∵4sin(θ+60º)·cosθ=2sinθ·cosθ+2cos2θ=sin2θ (1+cos2θ)=sin2θcos2θ=2sin(2θ+60º)+
θ∈[0º,60º]∴2θ+60º∈[60º,180º]∴sin(2θ+60º)∈[0,1]
∴4sin(θ+60º)·cosθ∈[,2+]∴AD (2-)=2-3∴AD长度的最小值为2-3 当且仅当时取得最小值.
考点:本题考查了三角函数的性质及正余弦定理的运用
点评:本小题主要考查正弦定理、余弦定理等基础知识,同时考查利用三角公式进行恒等变形的技能和运算能力

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四边形的外接圆为⊙是⊙的切线,的延长线与相交于点
求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形是☉的内接四边形,不经过点平分,经过点的直线分别交的延长线于点,且,证明:

(1)
(2)是☉的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知为锐角△的内心,且,点为内切圆与边的切点,过点作直线的垂线,垂足为

(1)求证:
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D,若PE=PA,,PD=1,BD=8,求线段BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,的外接圆的切线的延长线交于点的平分线与交于点D.

(1)求证:
(2)若的外接圆的直径,且=1.求长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)选修4-1:几何证明选讲
如图,ABCD四点在同一圆上,的延长线交于点,点的延长线上.

(Ⅰ)若,求的值;
(Ⅱ)若,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)选修4—1: 几何证明选讲
如图,直线经过⊙O上一点,且,⊙O交直线.

(1)求证:直线是⊙O的切线;
(2)若⊙O的半径为3,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

选修4—1:几何证明选讲(10分):
如图:如图E、F、G、H为凸四边形ABCD中AC、BD、AD、DC的中点,∠ABC=∠ADC。

(1)求证:∠ADC=∠GEH;       (3分)
(2)求证:E、F、G、H四点共圆; (4分)
(3)求证:∠AEF=∠ACB-∠ACD  (3分)

查看答案和解析>>

同步练习册答案