精英家教网 > 高中数学 > 题目详情

如图,的外接圆的切线的延长线交于点的平分线与交于点D.

(1)求证:
(2)若的外接圆的直径,且=1.求长.

(1)略,(2)1

解析试题分析:(1)∵AE是圆的切线,∴∠ABC=∠CAE.
∵AD是∠BAC的平分线,∴∠BAD=∠CAD,
从而∠ABC+∠BAD=∠CAE+∠CAD.
∵∠ADE=∠ABC+∠BAD,∠DAE=∠CAD+∠CAE,
∴∠ADE=∠DAE,得EA=ED.
∵AE是圆的切线,∴由切割线定理,得=EC•EB.
结合EA=ED,得
(2)由(1)及ABE与ECA可得AC=1.
考点:本题主要考查圆的切线定理,切割线定理。
点评:中档题,涉及圆的问题,往往与三角形相关联,利用三角形相似或三角形全等解决问题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

几何证明选讲.
如图,直线过圆心,交⊙,直线交⊙ (不与重合),直线与⊙相切于,交,且与垂直,垂足为,连结.

求证:(1);      
(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直角三角形的顶点坐标,直角顶点,顶点轴上,点为线段的中点

(Ⅰ)求边所在直线方程;
(Ⅱ)为直角三角形外接圆的圆心,求圆的方程;
(Ⅲ)若动圆过点且与圆内切,求动圆的圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知点M在菱形ABCDBC边上,连结AMBD于点E,过菱形ABCD的顶点CCNAM,分别交BDAD于点FN,连结AFCE.判断四边形AECF的形状,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在边长为1的等边△ABC中,DE分别为边ABAC上的点,若A关于直线DE的对称点A1恰好在线段BC上,

(1)①设A1Bx,用x表示AD;②设∠A1ABθ∈[0º,60º],用θ表示AD
(2)求AD长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
如图,已知的切线,为切点,的割线,与交于两点,圆心的内部,点的中点.

(1)证明四点共圆;
(2)求的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
如图,四边形ACBD内接于圆O,对角线AC与BD相交于M,AC⊥BD,E是DC中点连结EM交AB于F,作OH⊥AB于HH,

求证:(1)EF⊥AB         (2)OH=ME

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,从圆外一点作圆的两条切线,切点分别为交于点,设为过点且不过圆心的一条弦,求证:四点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

选做题.(本题满分10分.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.)
选修4—1:平面几何
如图,Δ是内接于⊙O直线切⊙O于点相交于点.

(1)求证:Δ≌Δ
(2)若,求

查看答案和解析>>

同步练习册答案