精英家教网 > 高中数学 > 题目详情

如图,四边形是☉的内接四边形,不经过点平分,经过点的直线分别交的延长线于点,且,证明:

(1)
(2)是☉的切线.

(1)借助于两个三角形中两个角对应相等来加以证明。
(2)利用切割线定理来得到证明

解析试题分析:(1)根据题意,由于四边形是☉的内接四边形,不经过点平分,经过点的直线分别交的延长线于点,且,根据同弧所对的圆周角相等,以及内角平分线的性质可知,那么对于三角形ABC,与三角形CDF中有两组角对应相等,B= D,A= C,得到
(2)根据相似的结论可知,同时,那么可知,,因此可知是☉的切线.
考点:相似三角形,切线的证明
点评:主要是考查了圆的内部的性质以及三角形相似的证明,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分10分)选修4—1:几何证明选讲  
如图,直线为圆的切线,切点为,点在圆上,的角平分线交圆于点垂直交圆于点

(Ⅰ)证明:
(Ⅱ)设圆的半径为,延长于点,求外接圆的半径。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,的切线,过圆心的直径,相交于两点,连结. (1) 求证:
(2) 求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图△为直角三角形,,以为直径的圆交于点,点边的中点,连交圆于点

(Ⅰ)求证:四点共圆;
(Ⅱ)设,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是⊙O的直径 ,AC是弦 ,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E.OE交AD于点F.

(Ⅰ)求证:DE是⊙O的切线;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直角三角形的顶点坐标,直角顶点,顶点轴上,点为线段的中点

(Ⅰ)求边所在直线方程;
(Ⅱ)为直角三角形外接圆的圆心,求圆的方程;
(Ⅲ)若动圆过点且与圆内切,求动圆的圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

切线与圆切于点,圆内有一点满足的平分线交圆于,延长交圆于,延长交圆于,连接

(Ⅰ)证明://
(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在边长为1的等边△ABC中,DE分别为边ABAC上的点,若A关于直线DE的对称点A1恰好在线段BC上,

(1)①设A1Bx,用x表示AD;②设∠A1ABθ∈[0º,60º],用θ表示AD
(2)求AD长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)选修41:几何证明选讲
如图,相交于A、B两点,AB是的直径,过A点作的切线交于点E,并与BO1的延长线交于点P,PB分别与交于C,D两点.
求证:(1)PA·PD=PE·PC; (2)AD=AE.

查看答案和解析>>

同步练习册答案