精英家教网 > 高中数学 > 题目详情

(本小题满分10分)选修4—1:几何证明选讲  
如图,直线为圆的切线,切点为,点在圆上,的角平分线交圆于点垂直交圆于点

(Ⅰ)证明:
(Ⅱ)设圆的半径为,延长于点,求外接圆的半径。

(1)连接DE,交BC为G,由弦切角定理得,,又因为,所以DE为直径,由勾股顶底得DB=DC.

(2)由(1),,故的中垂线,故,圆心为O,连接BO,则,所以,故外接圆半径为.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(拓展深化)如图①所示,△ABC内接于⊙O,AB=AC,D是BC边上的一点,E是直线AD和△ABC外接圆的交点.

(1)求证:AB2=AD·AE;
(2)如图②所示,当D为BC延长线上的一点时,第(1)题的结论成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连结EC、CD.

(Ⅰ)求证:直线AB是⊙O的切线;
(Ⅱ)若tan∠CED=,⊙O的半径为3,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形.

(Ⅰ)求AM的长;
(Ⅱ)求sin∠ANC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在中,的角平分线,的外接圆交.

(1)求证:
(2)当时,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆上三点,的角平分线,交圆,过作圆的切线交的 延长线于.

(Ⅰ)求证:
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知与圆相切于点,直径 ,连结于点.

(1)求证:
(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形的外接圆为⊙是⊙的切线,的延长线与相交于点
求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形是☉的内接四边形,不经过点平分,经过点的直线分别交的延长线于点,且,证明:

(1)
(2)是☉的切线.

查看答案和解析>>

同步练习册答案