精英家教网 > 高中数学 > 题目详情

(拓展深化)如图①所示,△ABC内接于⊙O,AB=AC,D是BC边上的一点,E是直线AD和△ABC外接圆的交点.

(1)求证:AB2=AD·AE;
(2)如图②所示,当D为BC延长线上的一点时,第(1)题的结论成立吗?若成立,请证明;若不成立,请说明理由.

见解析

解析证明 (1)如图③,连接BE.

∵AB=AC,∴∠ABC=∠ACB.
∵∠ACB=∠AEB,
∴∠ABC=∠AEB.
∴△ABD∽△AEB.
∴AB∶AE=AD∶AB,
即AB2=AD·AE.
(2)如图④,连接BE、EC,

∵四边形ABCE内接于⊙O,
∴∠CED=∠ABC,
∵AB=AC,∴∠ABC=∠ACB,
∴∠CED=∠ACB,
∵∠AEC=180°-∠CED,
∠ACD=180°-∠ACB,
∴∠AEC=∠ACD,∴△ACE∽△ADC,
∴=,∴AB2=AD·AE.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知相交于A、B两点,过A点作切线交于点E,连接EB并延长交于点C,直线CA交于点D,
  
(1)当点D与点A不重合时(如图1),证明:ED2=EB·EC;
(2)当点D与点A重合时(如图2),若BC=2,BE=6,求的直径长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知PE切⊙O于点E,割线PBA交⊙OAB两点,∠APE的平分线和AEBE分别交于点CD.

求证:(1)CEDE;(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知四边形ABCD内接于⊙O,∠C=130°,AD是⊙O的直径,过B作⊙O的切线FE,求∠ABE的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(拓展深化)如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α.且DM交AC于F,ME交BC于G,

(1)写出图中三对相似三角形,并证明其中的一对;
(2)连接FG,如果α=45°,AB=4,AF=3,求FG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB和BC分别与圆O相切于点D,C,AC经过圆心O,且BC=2OC.求证:AC=2AD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在△ABC中,AE∶EB=1∶3,BD∶DC=2∶1,AD与CE相交于F,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,点为锐角的内切圆圆心,过点作直线的垂线,垂足为,圆与边相切于点.若,求的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)选修4—1:几何证明选讲  
如图,直线为圆的切线,切点为,点在圆上,的角平分线交圆于点垂直交圆于点

(Ⅰ)证明:
(Ⅱ)设圆的半径为,延长于点,求外接圆的半径。

查看答案和解析>>

同步练习册答案