精英家教网 > 高中数学 > 题目详情

如图所示,已知四边形ABCD内接于⊙O,∠C=130°,AD是⊙O的直径,过B作⊙O的切线FE,求∠ABE的度数.

140°

解析解 因为四边形ABCD为⊙O的内接四边形,∠C=130°,所以∠A=50°.
连接OB,则∠ABO=50°,所以∠AOB=80°.

又因为∠ABF=∠AOB=40°,
所以∠ABE=180°-∠ABF=180°-40°=140°,
即∠ABE=140°.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知A、B、C三点的坐标分别为(0,1)、(-1,0)、(1,0),P是线段AC上一点,BP交AO于点D,设三角形ADP的面积为S,点P的坐标为(x,y),求S关于x的函数表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,过圆O外一点P作该圆的两条割线PABPCD,分别交圆O于点ABCD,弦ADBC交于点Q,割线PEF经过点Q交圆O于点EF,点MEF上,且∠BAD=∠BMF.

(1)求证:PA·PBPM·PQ
(2)求证:∠BMD=∠BOD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,D为△ABC中BC边上的一点,∠CAD=∠B,若AD=6,AB=8,BD=7,求DC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(拓展深化)如图,已知△ABC中的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.

(1)证明:B、D、H、E四点共圆;
(2)证明:CE平分∠DEF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在△ABC中,延长BC到D,使CD=BC,取AB的中点F,连接FD交AC于点E.

(1)求的值;
(2)若AB=a,FB=EC,求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(拓展深化)如图①所示,△ABC内接于⊙O,AB=AC,D是BC边上的一点,E是直线AD和△ABC外接圆的交点.

(1)求证:AB2=AD·AE;
(2)如图②所示,当D为BC延长线上的一点时,第(1)题的结论成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知在△ABC中,ABACD是△ABC外接圆劣弧上的点(不与点AC重合),延长BDE.

(1)求证:AD的延长线平分∠CDE
(2)若∠BAC=30°,△ABCBC边上的高为2+,求△ABC外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形.

(Ⅰ)求AM的长;
(Ⅱ)求sin∠ANC.

查看答案和解析>>

同步练习册答案