精英家教网 > 高中数学 > 题目详情

(拓展深化)如图,已知△ABC中的两条角平分线AD和CE相交于H,∠B=60°,F在AC上,且AE=AF.

(1)证明:B、D、H、E四点共圆;
(2)证明:CE平分∠DEF.

见解析

解析证明 (1)在△ABC中,因为∠B=60°,
所以∠BAC+∠BCA=120°.
因为AD,CE是角平分线,
所以∠HAC+∠HCA=60°,
故∠AHC=120°.
于是∠EHD=∠AHC=120°.
因为∠EBD+∠EHD=180°,
所以B、D、H、E四点共圆.
(2)连接BH,则BH为∠ABC的平分线,

得∠HBD=30°.
由(1)知B、D、H、E四点共圆.
所以∠CED=∠HBD=30°.
又∵∠AHE=∠EBD=60°,
由已知可得EF⊥AD,
可得∠CEF=30°,
所以CE平分∠DEF.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,E是圆O内两弦AB和CD的交点,过AD延长线上一点F作圆O的切线FG,G为切点,已知EF=FG.

求证:(1);(2)EF//CB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,DE分别为△ABCABAC的中点,直线DE交△ABC的外接圆于FG两点,若CFAB,证明:
 
(1)CDBC
(2)△BCD∽△GBD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知PE切⊙O于点E,割线PBA交⊙OAB两点,∠APE的平分线和AEBE分别交于点CD.

求证:(1)CEDE;(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,PT切⊙O于T,PAB、PDC是圆O的两条割线,PA=3,PD=4,PT=6,AD=2,求弦CD的长和弦BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知四边形ABCD内接于⊙O,∠C=130°,AD是⊙O的直径,过B作⊙O的切线FE,求∠ABE的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(拓展深化)如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α.且DM交AC于F,ME交BC于G,

(1)写出图中三对相似三角形,并证明其中的一对;
(2)连接FG,如果α=45°,AB=4,AF=3,求FG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在△ABC中,AE∶EB=1∶3,BD∶DC=2∶1,AD与CE相交于F,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,点是以线段为直径的圆上一点,于点,过点作圆的切线,与的延长线交于点,点的中点,连结并延长与相交于点,延长的延长线相交于点.

(Ⅰ)求证:
(Ⅱ)求证:是圆的切线.

查看答案和解析>>

同步练习册答案