精英家教网 > 高中数学 > 题目详情

如图,四边形的外接圆为⊙是⊙的切线,的延长线与相交于点
求证:

详见解析.

解析试题分析:作辅助线往往是解答平面几何证明的关键,本题也不例外.
试题解析:证明:连结

是⊙的切线,

,∴

∵⊙是四边形的外接圆,


,即.


考点:本题考查平面几何中的三角形相似以及圆的相关知识,考查推理论证能力

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,点为锐角的内切圆圆心,过点作直线的垂线,垂足为,圆与边相切于点.若,求的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)选修4—1:几何证明选讲  
如图,直线为圆的切线,切点为,点在圆上,的角平分线交圆于点垂直交圆于点

(Ⅰ)证明:
(Ⅱ)设圆的半径为,延长于点,求外接圆的半径。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,AC为的直径,D为的中点,E为BC的中点.

(Ⅰ)求证:AB∥DE;
(Ⅱ)求证:2AD·CD=AC·BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆的直径,在圆上,的延长线交直线于点 求证:
(Ⅰ)直线是圆的切线;
(Ⅱ) 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

几何证明选讲.
如图,直线过圆心,交⊙,直线交⊙ (不与重合),直线与⊙相切于,交,且与垂直,垂足为,连结.

求证:(1);      
(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,的切线,过圆心的直径,相交于两点,连结. (1) 求证:
(2) 求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图△为直角三角形,,以为直径的圆交于点,点边的中点,连交圆于点

(Ⅰ)求证:四点共圆;
(Ⅱ)设,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在边长为1的等边△ABC中,DE分别为边ABAC上的点,若A关于直线DE的对称点A1恰好在线段BC上,

(1)①设A1Bx,用x表示AD;②设∠A1ABθ∈[0º,60º],用θ表示AD
(2)求AD长度的最小值.

查看答案和解析>>

同步练习册答案