精英家教网 > 高中数学 > 题目详情

如图△为直角三角形,,以为直径的圆交于点,点边的中点,连交圆于点

(Ⅰ)求证:四点共圆;
(Ⅱ)设,求的长.

(1)(1)做出辅助线,首先证明两个三角形全等,根据三角形三边对应相等,得到两个三角形全等,得到对应角相等,从而得到四边形一对对角互补,即四点共圆.
(2)5

解析试题分析:(1)证明:连结OE,BE
∵AB为圆O直径    ∴BE⊥AE
OB=OE      ∴∠BEO=∠OBE
Rt△BEC中    D为BC中点      ∴BD=DE   ∠BED=∠DBE
∠OED=∠BEO+∠BED=∠OBE+∠DBE=∠OBD=∠ABD=90°
∠OED+∠OBD=180°
∴O、B、D、E四点共圆               5分
(II)解:延长DO交圆于H, O、D分别为AB、AC中点
OD=AC=3      MH=AB=4    DM=1
由(I)OE⊥DE    E为圆上    ∴DE为圆O切线
DE2=DM·DH=1·(4+1)=5                 10分
考点:三角形全等,四点共圆
点评:本题考查三角形全等,考查四点共圆,考查圆的切割线定理,是一个平面几何的综合题目,解题时注意分析要证明的结论与条件之间的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形.

(Ⅰ)求AM的长;
(Ⅱ)求sin∠ANC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形的外接圆为⊙是⊙的切线,的延长线与相交于点
求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆与圆内切于点,其半径分别为,圆的弦交圆于点不在上),求证:为定值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图AB为圆O直径,P为圆O外一点,过P点作PC⊥AB,
垂是为C,PC交圆O于D点,PA交圆O于E点,BE交PC于F点。

(I)求证:∠PFE=∠PAB;
(II)求证:CD2=CF·CP.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形是圆内接四边形,延长与的延长线交于点,且.

(1)求证:
(2)当时,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形是☉的内接四边形,不经过点平分,经过点的直线分别交的延长线于点,且,证明:

(1)
(2)是☉的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知为锐角△的内心,且,点为内切圆与边的切点,过点作直线的垂线,垂足为

(1)求证:
(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)选修4—1: 几何证明选讲
如图,直线经过⊙O上一点,且,⊙O交直线.

(1)求证:直线是⊙O的切线;
(2)若⊙O的半径为3,求的长.

查看答案和解析>>

同步练习册答案