精英家教网 > 高中数学 > 题目详情

如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连结EC、CD.

(Ⅰ)求证:直线AB是⊙O的切线;
(Ⅱ)若tan∠CED=,⊙O的半径为3,求OA的长.

(1)详见解析;(2)

解析试题分析:(1)连接,要证明是圆的切线,根据切线的判定定理,只需证明,因为,所以;(2)由已知,所以求即可,因为圆的半径已知,所以求即可,这时需要 寻求线段长的等量关系,或者考虑全等或者考虑相似,由(1)知是圆的切线,有弦切角定理可知还有公共角,所以可判定,从而列出关于线段的比例式,从中计算即可.
试题解析:(1)连接,因为,所以,所以是圆的切线;
(2)因为是圆的切线,所以,所以,,所以,因为是圆的直径,所以,在中,,所以
,∴.
考点:1、圆的切线的判定;2、三角形的相似;3、弦切角定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,已知PE切⊙O于点E,割线PBA交⊙OAB两点,∠APE的平分线和AEBE分别交于点CD.

求证:(1)CEDE;(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在△ABC中,AE∶EB=1∶3,BD∶DC=2∶1,AD与CE相交于F,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,点为锐角的内切圆圆心,过点作直线的垂线,垂足为,圆与边相切于点.若,求的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是⊙O的直径 ,AC是弦 ,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E.,OE交AD于点F.

(I)求证:DE是⊙O的切线;
(II)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,C是以AB为直径的半圆O上的一点,过C的直线交直线AB于E,交过A点的切线于D,BC∥OD.

(Ⅰ)求证:DE是圆O的切线;
(Ⅱ)如果AD=AB=2,求EB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,点是以线段为直径的圆上一点,于点,过点作圆的切线,与的延长线交于点,点的中点,连结并延长与相交于点,延长的延长线相交于点.

(Ⅰ)求证:
(Ⅱ)求证:是圆的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)选修4—1:几何证明选讲  
如图,直线为圆的切线,切点为,点在圆上,的角平分线交圆于点垂直交圆于点

(Ⅰ)证明:
(Ⅱ)设圆的半径为,延长于点,求外接圆的半径。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,的切线,过圆心的直径,相交于两点,连结. (1) 求证:
(2) 求证:.

查看答案和解析>>

同步练习册答案