精英家教网 > 高中数学 > 题目详情

如图,C是以AB为直径的半圆O上的一点,过C的直线交直线AB于E,交过A点的切线于D,BC∥OD.

(Ⅰ)求证:DE是圆O的切线;
(Ⅱ)如果AD=AB=2,求EB.

(Ⅰ)见解析;(Ⅱ).

解析试题分析:(Ⅰ)连接,根据直径所对的圆心角是直角可知,,结合已知条件“”得,,所以的中垂线,由中垂线的性质可得到,,把角转化为,即可得到,则结论可证;(Ⅱ)先根据两个对应角相等得到,由相似三角形对应线段成比例求出线段的值,进一步求出的值,由平行线分线段成比例可得到的值,从而解出.
试题解析:(Ⅰ)连接

是直径,则.
得,
的中垂线,
所以
所以
,即是圆的切线.                         5分
(Ⅱ)因为
所以
则有
所以,那么
所以
所以
所以
解得.                         10分
考点:1.三角形相似的判定及其性质;2.平行线分线段成比例;3.切线的性质及判定

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,D为△ABC中BC边上的一点,∠CAD=∠B,若AD=6,AB=8,BD=7,求DC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知在△ABC中,ABACD是△ABC外接圆劣弧上的点(不与点AC重合),延长BDE.

(1)求证:AD的延长线平分∠CDE
(2)若∠BAC=30°,△ABCBC边上的高为2+,求△ABC外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示, 为圆的切线, 为切点,的角平分线与和圆分别交于点.

(1)求证   (2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连结EC、CD.

(Ⅰ)求证:直线AB是⊙O的切线;
(Ⅱ)若tan∠CED=,⊙O的半径为3,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是圆O的直径,C,D是圆O上两点,AC与BD相交于点E,GC,GD是圆O的切线,点F在DG的延长线上,且.求证:(1)D、E、C、F四点共圆;(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形.

(Ⅰ)求AM的长;
(Ⅱ)求sin∠ANC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆上三点,的角平分线,交圆,过作圆的切线交的 延长线于.

(Ⅰ)求证:
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆与圆内切于点,其半径分别为,圆的弦交圆于点不在上),求证:为定值。

查看答案和解析>>

同步练习册答案