精英家教网 > 高中数学 > 题目详情
某公司计划2014年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过180000元,甲、乙两个电视台的广告收费标准分别为1000元/分钟和400元/分钟.规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为3000元和2000元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?
考点:简单线性规划
专题:不等式的解法及应用
分析:根据条件设出变量,建立二元一次不等式组,利用数形结合即可得到结论.
解答: 解:设公司在甲电视台和乙电视台做广告的时间分别为x分钟和y分钟,总收益为z元,
由题意得
x+y≤300
1000x+400y≤180000
x≥0,y≥0

目标函数为z=3000x+2000y.
二元一次不等式组等价于
x+y≤300
5x+2y≤900
x≥0,y≥0

作出二元一次不等式组所表示的平面区域,即可行域(如图).
作直线l:3000x+2000y=0,即3x+2y=0.

平移直线l,从图中可知,当直线l过M点时,目标函数取得最大值.
联立
x+y=300
5x+2y=900
解得x=100,y=200.
∴点M的坐标为(100,200),
∴zmax=3000×100+2000×200=700000(元).
答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是700000元.
点评:本题主要考查线性规划的应用,建立约束条件以及目标函数,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设向量
a
=(2,4),
b
=(m,-1).
(1)若
a
b
,求实数m的值;
(2)若|
a
+
b
|=5,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,已知(a2012-1)3+2014a2012=0,a33-3a32+2017a3=4029,则下列结论正确的是(  )
A、S2014=2014,a2012<a3
B、S2014=2014,a2012>a3
C、S2014=2013,a2012<a3
D、S2014=2013,a2012>a3

查看答案和解析>>

科目:高中数学 来源: 题型:

在D上的函数f(x),如果满足:对?x∈D,存在常数M>0,都有|f(x)|<M成立,则称f(x)是D上的有界函数.则下列定义在R上的函数中,不是有界函数的是(  )
A、f(x)=sinx2
B、f(x)=
1
x2+1
C、f(x)=-21-|x|
D、f(x)=-log2(1+|x|)

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-60,a17=-12.
(1)求通项an
(2)求此数列前n项和Sn的最小值
(3)求此数列前30项的绝对值的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2x.
(1)求函数f(x+1)的表达式.
(2)求函数f(x+1)的值域.
(3)求函数f(x)=x2+2x在区间[-2,2]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M的方程为x2+(y-2)2=1,直线l的方程为x-2y=0,点P在直线l上,过P点作圆M的切线PA,PB,切点为A,B.
(1)若∠APB=60°,试求点P的坐标;
(2)若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当CD=
2
时,求直线CD的方程;
(3)经过A,P,M三点的圆是否经过异于点M的定点,若经过,请求出此定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinA,cosA),
n
=(-
3
,-1),
m
n
,且A为锐角.
(1)求角A的大小;
(2)求函数f(x)=cos2x+4cosAsinx,(x∈R) 最大值及取最大值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

二项式(3
3x
+
1
x
n的展开式中的各项系数和为P,所有二项式系数和为Q,若P+Q=272,求展开式中的常数项.

查看答案和解析>>

同步练习册答案