ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÉ϶¥µãΪB2£¬ÓÒ½¹µãΪF2£¬¡÷B2OF2ΪµÈÑüÖ±½ÇÈý½ÇÐΣ¨OÎª×ø±êÔ­µã£©£¬Å×ÎïÏßy2=4
2
xµÄ½¹µãÇ¡ºÃÊǸÃÍÖÔ²µÄÓÒ¶¥µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôµãB1£¬B2·Ö±ðÊÇÍÖÔ²µÄ϶¥µãºÍÉ϶¥µã£¬µãPÊÇÍÖÔ²ÉÏÒìÓëB1£¬B2µÄµã£¬ÇóÖ¤£ºÖ±ÏßPB1ºÍÖ±ÏßPB2µÄбÂÊÖ®»ýΪ¶¨Öµ£®
£¨3£©ÒÑÖªÔ²M£ºx2+y2=
2
3
µÄÇÐÏßlÓëÍÖÔ²ÏཻÓÚC£¬DÁ½µã£¬ÄÇôÒÔCDΪֱ¾¶µÄÔ²ÊÇ·ñ¾­¹ý¶¨µã£¿Èç¹ûÊÇ£¬Çó³ö¶¨µãµÄ×ø±ê£»Èç¹û²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺×ÛºÏÌâ,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨1£©ÒÑÖªb=c£¬a=
2
£¬Ôòb=c=1£¬¿ÉÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèP£¨m£¬n£©£¬Ôò
m2
2
+n2=1
£¬Çó³öÖ±ÏßPB1ºÍÖ±ÏßPB2µÄбÂÊ£¬¼´¿ÉµÃ³ö½áÂÛ£®
£¨3£©ÏÈÇóµÃÖ±ÏßlµÄбÂʲ»´æÔÚ¼°Ð±ÂÊΪ0ʱԲµÄ·½³Ì£¬Óɴ˿ɵÃÁ½Ô²Ëù¹ý¹«¹²µãΪԭµãO£¬µ±Ö±ÏßlµÄбÂÊ´æÔÚÇÒ²»ÎªÁãʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¬´úÈëÍÖÔ²·½³ÌÏûµôyµÃxµÄ¶þ´Î·½³Ì£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉΤ´ï¶¨Àí¡¢ÏòÁ¿ÊýÁ¿»ý¿ÉµÃ
OA
OB
µÄ±í´ïʽ£¬ÔÙ¸ù¾ÝÏßÔ²ÏàÇпɵÃk£¬mµÄ¹ØÏµÊ½£¬´úÈëÉÏÊö±í´ïʽ¿ÉÇóµÃ
OA
OB
=0£¬Óɴ˿ɵýáÂÛ£»
½â´ð£º ½â£º£¨1£©ÒÑÖªb=c£¬a=
2
£¬
Ôòb=c=1£¬
ÔòËùÇó·½³ÌΪ£º
x2
2
+y2=1
£»
£¨2£©ÓÉÒÑÖªB1£¨0£¬-1£©£¬B2£¨0£¬1£©£¬
ÉèP£¨m£¬n£©£¬Ôò
m2
2
+n2=1
£¬
¡àkPB1kPB2=
n+1
m
n-1
m
=
n2-1
m2
=-
1
2
£»
£¨3£©£¨i£©µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬
ÒòΪֱÏßlÓëÔ²MÏàÇУ¬¹ÊÆäÖеÄÒ»ÌõÇÐÏß·½³ÌΪx=
6
3
£®
´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¬¿ÉµÃA£¨
6
3
£¬
6
3
£©£¬B£¨
6
3
£¬-
6
3
£©£¬
ÔòÒÔABΪֱ¾¶µÄÔ²µÄ·½³ÌΪ£¨x-
6
3
£©2+y2=
2
3
£®
£¨ii£©µ±Ö±ÏßlµÄбÂÊΪÁãʱ£¬
ÒòΪֱÏßlÓëÔ²MÏàÇУ¬ËùÒÔÆäÖеÄÒ»ÌõÇÐÏß·½³ÌΪy=-
6
3
£®
´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¬¿ÉµÃA£¨
6
3
£¬-
6
3
£©£¬B£¨-
6
3
£¬-
6
3
£©£¬
ÔòÒÔABΪֱ¾¶µÄÔ²µÄ·½³ÌΪx2+£¨y+
6
3
£©2+y2=
2
3
£®
ÏÔÈ»ÒÔÉÏÁ½Ô²¶¼¾­¹ýµãO£¨0£¬0£©£®
£¨iii£©µ±Ö±ÏßlµÄбÂÊ´æÔÚÇÒ²»ÎªÁãʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£®
´úÈëÍÖÔ²·½³ÌÏûÈ¥y£¬µÃ£¨2k2+1£©x2+4kmx+2m2-2=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòx1+x2=
-4km
2k2+1
£¬x1x2=
2m2-2
2k2+1
£®
ËùÒÔy1y2=£¨kx1+m£©£¨kx2+m£©=k2x1x2+km£¨x1+x2£©+m2=
m2-2k2
2k2+1
£®
ËùÒÔ
OA
OB
=x1x2+y1y2=
3m2-2k2-2
2k2+1
¢Ù£¬
ÒòΪֱÏßlºÍÔ²MÏàÇУ¬
ËùÒÔÔ²Ðĵ½Ö±ÏßlµÄ¾àÀëd=
|m|
1+k2
=
6
3
£¬ÕûÀí£¬µÃm2=
2
3
£¨1+k2£©£¬¢Ú
½«¢Ú´úÈë¢Ù£¬µÃ
OA
OB
=£¬ÏÔÈ»ÒÔABΪֱ¾¶µÄÔ²¾­¹ý¶¨µãO£¨0£¬0£©£¬
×ÛÉÏ¿ÉÖª£¬ÒÔABΪֱ¾¶µÄÔ²¹ý¶¨µã£¨0£¬0£©£®
µãÆÀ£º±¾Ì⿼²éÍÖÔ²µÄ·½³Ì¡¢Ô²µÄ·½³Ì¼°Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éÏòÁ¿µÄÊýÁ¿»ýÔËË㣬¿¼²éѧÉú½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚ¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©£¬ÒÔÏÂËĸöÃüÌâÖдíÎóµÄÊÇ £¨¡¡¡¡£©
A¡¢Èôf£¨x£©ÊÇÆæº¯Êý£¬Ôòf£¨x-2£©µÄͼÏó¹ØÓÚµãA£¨2£¬0£©¶Ô³Æ
B¡¢Èôº¯Êýf£¨x-2£©µÄͼÏó¹ØÓÚÖ±Ïßx=2¶Ô³Æ£¬Ôòf£¨x£©ÎªÅ¼º¯Êý
C¡¢Èô¶Ôx¡ÊR£¬ÓÐf£¨x-2£©=-f£¨x£©£¬Ôò4ÊÇf£¨x£©µÄÖÜÆÚ
D¡¢º¯Êýy=f£¨x-2£©Óëy=f£¨2-x£©µÄͼÏó¹ØÓÚÖ±Ïßx=0¶Ô³Æ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=2sin£¨x+
¦Ð
3
£©cosx£®
£¨1£©Çóf£¨x£©µÄÖµÓò£»
£¨2£©Éè¡÷ABCµÄÄÚ½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðΪa¡¢b¡¢c£¬ÒÑÖªAΪÈñ½Ç£¬f£¨A£©=
3
2
£¬b=2£¬c=3£¬Çócos£¨A-B£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¦È¡Ê£¨
¦Ð
2
£¬¦Ð£©£¬sin¦È=
4
5
£¬Çócos¦È¼°sin£¨¦È+
¦Ð
3
£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÖ±ÏßlÓëÅ×ÎïÏßx2=4yÏཻÓÚA£¬BÁ½µã£¬ÇÒÓëÔ²£¨y-1£©2+x2=1ÏàÇУ®
£¨¢ñ£©ÇóÖ±ÏßlÔÚyÖáÉϽؾàµÄȡֵ·¶Î§£»
£¨¢ò£©ÉèFÊÇÅ×ÎïÏߵĽ¹µã£¬ÇÒ
FA
FB
=0£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬´¢Ó͹àµÄ±íÃæ»ýSΪ¶¨Öµ£¬ËüµÄÉϲ¿ÊǰëÇò£¬Ï²¿ÊÇÔ²Öù£¬°ëÇòµÄ°ë¾¶µÈÓÚÔ²Öùµ×Ãæ°ë¾¶£®
£¨1£©ÊÔÓð뾶r±íʾ³ö´¢Ó͹àµÄÈÝ»ýV£¬²¢Ð´³örµÄ·¶Î§£®
£¨2£©µ±Ô²Öù¸ßhÓë°ë¾¶rµÄ±ÈΪ¶àÉÙʱ£¬´¢Ó͹àµÄÈÝ»ýV×î´ó£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²E£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÓÒ½¹µãΪF£¨1£¬0£©£¬Éè×ó¶¥µãΪA£¬É϶¥µãΪB£¬ÇÒ
OF
FB
=
AB
BF
£¬ÈçͼËùʾ£®
£¨¢ñ£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©ÈôµãAÓëÍÖÔ²ÉϵÄÁíÒ»µãC£¨·ÇÓÒ¶¥µã£©¹ØÓÚÖ±Ïßl¶Ô³Æ£¬Ö±ÏßlÉÏÒ»µãN£¨0£¬y0£©Âú×ã
NA
NC
=0£¬ÇóµãCµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Æ½ÃæABB1A1ΪԲÖùOO1µÄÖá½ØÃæ£¬µãCΪ
AB
Éϵĵ㣬µãMΪBCÖе㣮
£¨¢ñ£©ÇóÖ¤£ºB1M¡ÎÆ½ÃæO1AC£»
£¨¢ò£©ÈôAB=AA1£¬¡ÏCAB=30¡ã£¬Çó¶þÃæ½ÇC-AO1-BµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨Àí£©ÒÑÖªµãA£¨3£¬
3
£©£¬OÎª×ø±êÔ­µã£¬µãP£¨x£¬y£©µÄ×ø±êx£¬yÂú×ã
3
x-y¡Ü0
x-
3
y+2¡Ý0
y¡Ý0
£¬ÔòÏòÁ¿
OP
ÔÚÏòÁ¿
OA
·½ÏòÉϵÄͶӰµÄȡֵ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸