·ÖÎö£º£¨1£©ÒÑÖªb=c£¬
a=£¬Ôòb=c=1£¬¿ÉÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèP£¨m£¬n£©£¬Ôò
+n2=1£¬Çó³öÖ±ÏßPB
1ºÍÖ±ÏßPB
2µÄбÂÊ£¬¼´¿ÉµÃ³ö½áÂÛ£®
£¨3£©ÏÈÇóµÃÖ±ÏßlµÄбÂʲ»´æÔÚ¼°Ð±ÂÊΪ0ʱԲµÄ·½³Ì£¬Óɴ˿ɵÃÁ½Ô²Ëù¹ý¹«¹²µãΪԵãO£¬µ±Ö±ÏßlµÄбÂÊ´æÔÚÇÒ²»ÎªÁãʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£¬´úÈëÍÖÔ²·½³ÌÏûµôyµÃxµÄ¶þ´Î·½³Ì£¬ÉèA£¨x
1£¬y
1£©£¬B£¨x
2£¬y
2£©£¬ÓÉΤ´ï¶¨Àí¡¢ÏòÁ¿ÊýÁ¿»ý¿ÉµÃ
•µÄ±í´ïʽ£¬ÔÙ¸ù¾ÝÏßÔ²ÏàÇпɵÃk£¬mµÄ¹ØÏµÊ½£¬´úÈëÉÏÊö±í´ïʽ¿ÉÇóµÃ
•=0£¬Óɴ˿ɵýáÂÛ£»
½â´ð£º
½â£º£¨1£©ÒÑÖªb=c£¬
a=£¬
Ôòb=c=1£¬
ÔòËùÇó·½³ÌΪ£º
+y2=1£»
£¨2£©ÓÉÒÑÖªB
1£¨0£¬-1£©£¬B
2£¨0£¬1£©£¬
ÉèP£¨m£¬n£©£¬Ôò
+n2=1£¬
¡à
kPB1•kPB2=
•=
=-
£»
£¨3£©£¨i£©µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬
ÒòΪֱÏßlÓëÔ²MÏàÇУ¬¹ÊÆäÖеÄÒ»ÌõÇÐÏß·½³ÌΪx=
£®
´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¬¿ÉµÃA£¨
£¬
£©£¬B£¨
£¬-
£©£¬
ÔòÒÔABΪֱ¾¶µÄÔ²µÄ·½³ÌΪ£¨x-
£©
2+y
2=
£®
£¨ii£©µ±Ö±ÏßlµÄбÂÊΪÁãʱ£¬
ÒòΪֱÏßlÓëÔ²MÏàÇУ¬ËùÒÔÆäÖеÄÒ»ÌõÇÐÏß·½³ÌΪy=-
£®
´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¬¿ÉµÃA£¨
£¬-
£©£¬B£¨-
£¬-
£©£¬
ÔòÒÔABΪֱ¾¶µÄÔ²µÄ·½³ÌΪx
2+£¨y+
£©
2+y
2=
£®
ÏÔÈ»ÒÔÉÏÁ½Ô²¶¼¾¹ýµãO£¨0£¬0£©£®
£¨iii£©µ±Ö±ÏßlµÄбÂÊ´æÔÚÇÒ²»ÎªÁãʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+m£®
´úÈëÍÖÔ²·½³ÌÏûÈ¥y£¬µÃ£¨2k
2+1£©x
2+4kmx+2m
2-2=0£¬
ÉèA£¨x
1£¬y
1£©£¬B£¨x
2£¬y
2£©£¬Ôòx
1+x
2=
£¬x
1x
2=
£®
ËùÒÔy
1y
2=£¨kx
1+m£©£¨kx
2+m£©=k
2x
1x
2+km£¨x
1+x
2£©+m
2=
£®
ËùÒÔ
•=x
1x
2+y
1y
2=
¢Ù£¬
ÒòΪֱÏßlºÍÔ²MÏàÇУ¬
ËùÒÔÔ²Ðĵ½Ö±ÏßlµÄ¾àÀëd=
=
£¬ÕûÀí£¬µÃm
2=
£¨1+k
2£©£¬¢Ú
½«¢Ú´úÈë¢Ù£¬µÃ
•=£¬ÏÔÈ»ÒÔABΪֱ¾¶µÄÔ²¾¹ý¶¨µãO£¨0£¬0£©£¬
×ÛÉÏ¿ÉÖª£¬ÒÔABΪֱ¾¶µÄÔ²¹ý¶¨µã£¨0£¬0£©£®