精英家教网 > 高中数学 > 题目详情
如图,储油灌的表面积S为定值,它的上部是半球,下部是圆柱,半球的半径等于圆柱底面半径.
(1)试用半径r表示出储油灌的容积V,并写出r的范围.
(2)当圆柱高h与半径r的比为多少时,储油灌的容积V最大?
考点:导数在最大值、最小值问题中的应用
专题:应用题,导数的综合应用
分析:(1)由表面积S为定值,用r表示出h,可得储油灌的容积V及r的范围;
(2)求导函数,确定函数的极大值即最大值,即可得出结论.
解答: 解:(1)∵S=2πr2+2πrh+πr2=3πr2+2πrh,∴h=
S-3πr2
2πr
,…(3分)
V=
2
3
πr3r2h
=
rS
2
-
5
6
πr3   (0<r<
3πS
)
;                           …(7分)
(2)∵V′=
S
2
-
5
2
πr2
,令V'=0,得r=
5πS
,列表
r (0,
5πS
)
5πS
(
5πS
3πS
)
V'(r) + 0 -
V(r) 极大值即最大值
…(11分)
∴当r=
5πS
时,体积V取得最大值,此时h=
5πS

∴h:r=1:1.…(13分)
答:储油灌容积V=
rS
2
-
5
6
πr3   (0<r<
3πS
)
,当h:r=1:1时容积V取得最大值.…(15分)
点评:本题考查导数知识的运用,考查函数的最值,考查学生利用数学知识解决实际问题的能力,确定函数解析式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将函数y=sin(2x+φ)的图象沿x轴向左平移
π
6
个单位后,得到一个关于y轴对称的图象,则φ的一个可能取值为(  )
A、
π
3
B、
π
6
C、-
π
3
D、-
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
ex
(x∈R),g(x)=
(2-x)ex
e2

(Ⅰ)求函数f(x)的极值;
(Ⅱ)求证:当x>1时,函数y=g(x)的图象恒在函数y=f(x)的图象下方;
(Ⅲ)若k>0,求不等式f′(x)-k(1-x)f(x)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
ax2-(a+1)x+lnx,g(x)=x2-2bx-
5
4

(Ⅰ)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当a<0时,求函数f(x)的单调区间;
(Ⅲ)当a=
1
2
时,对任意x1∈(0,2],存在x2∈[1,2],使得f(x1)≤g(x2)成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的上顶点为B2,右焦点为F2,△B2OF2为等腰直角三角形(O为坐标原点),抛物线y2=4
2
x的焦点恰好是该椭圆的右顶点.
(1)求椭圆C的方程;
(2)若点B1,B2分别是椭圆的下顶点和上顶点,点P是椭圆上异与B1,B2的点,求证:直线PB1和直线PB2的斜率之积为定值.
(3)已知圆M:x2+y2=
2
3
的切线l与椭圆相交于C,D两点,那么以CD为直径的圆是否经过定点?如果是,求出定点的坐标;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某种同型号的6瓶饮料中有2瓶已过了保质期.
(1)从6瓶饮料中任意抽取1瓶,求抽到没过保质期的饮料的概率;
(2)从6瓶饮料中随机抽取2瓶,求抽到已过保质期的饮料的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
r2
b2
=1(a<b<0)的离心率为
1
2
,椭圆C的中心O关于直线2x-y-5=0的对称点落在直线x=a2上.
(1)求椭圆C的方程;
(2)设P(4,0)是椭圆C上关于x轴对称的任意两点,连接PN交椭圆C于另一点E,求直线PN的斜率范围并证明直线ME与x轴相交顶点.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学为丰富教工生活,国庆节举办教工趣味投篮比赛,有A、B两个定点投篮位置,在A点投中一球得2分,在B点投中一球得3分.其规则是:按先A后B再A的顺序投篮.教师甲在A和B点投中的概率分别是
1
2
1
3
,且在A、B两点投中与否相互独立.
(Ⅰ)若教师甲投篮三次,试求他投篮得分X的分布列和数学期望;
(Ⅱ)若教师乙与甲在A、B点投中的概率相同,两人按规则各投三次,求甲胜乙的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,an=an-1+n,n≥2,为计算这个数列前10项的和S,现给出该问题算法的程序框图(如图所示),则图中判断框(1)处合适的语句是
 

查看答案和解析>>

同步练习册答案