精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分10分)选修4-4:坐标系与参数方程

已知直线的极坐标方程为,圆的参数方程为

(其中为参数).

)将直线的极坐标方程化为直角坐标方程;

)求圆上的点到直线的距离的最小值.

【答案】(1; (2

【解析】本题考查极坐标方程与直角坐标方程,参数方程与普通方程的互化,考查点线距离公式的运用,属于基础题.

)以极点为原点,极轴为x轴正半轴建立直角坐标系,利用和角的正弦函数,即可求得该直线的直角坐标方程;

)圆M的普通方程为:x2+y+22=4,求出圆心M0-2)到直线x+y-1=0的距离,即可得到圆M上的点到直线的距离的最小值.

)以极点为原点,极轴为轴正半轴建立直角坐标系. ----------------1

----------------2

所以,该直线的直角坐标方程为:----------------3

)圆的普通方程为:----------------4

圆心到直线的距离---------------5

所以,圆上的点到直线的距离的最小值为----------------7

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学同学的成绩如表:

n

1

2

3

4

5

x0

70

76

72

70

72


(1)求第6位同学的成绩x6及这6位同学成绩的标准差s;
(2)若从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间[68,75)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】探究函数的最小值,并确定取得最小值时x的值.列表如下:

x

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

y

8.5

5

4.17

4.05

4.005

4

4.005

4.002

4.04

4.3

5

4.8

7.57

请观察表中y值随x值变化的特点,完成以下的问题.

函数在区间(0,2)上递减;

函数在区间 上递增.

时, .

证明:函数在区间(0,2)递减.

思考:函数时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设两条直线的方程分别为x+y+a=0和 x+y+b=0,已知a、b是关于x的方程x2+x+c=0的两个实根,且0≤c≤ ,则这两条直线间距离的最大值和最小值分别为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如右图所示,已知点的重心,过点作直线与两边分别交于两点,且,则的最小值为 ( )

A. 2 B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列前5项和为50, ,数列的前项和为 .

(Ⅰ)求数列 的通项公式;

(Ⅱ)若数列满足, ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】凸函数的性质定理为:如果函数f(x)在区间D上是凸函数,则对于区间D内的任意x1 , x2 , …,xn , 有 ≤f( ),已知函数y=sinx在区间(0,π)上是凸函数,则在△ABC中,sinA+sinB+sinC的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电影院共有1000个座位,票价不分等次,根据影院的经营经验,当每张票价不超过10元时,票可全售出;当每张票价高于10元时,每提高1元,将有30张票不能售出,为了获得更好的收益,需给影院定一个合适的票价,需符合的基本条件是:①为了方便找零和算账,票价定为1元的整数倍;②电影院放一场电影的成本费用支出为5750元,票房的收入必须高于成本支出,用x(元)表示每张票价,用y(元)表示该影院放映一场的净收入(除去成本费用支出后的收入)
问:
(1)把y表示为x的函数,并求其定义域;
(2)试问在符合基本条件的前提下,票价定为多少时,放映一场的净收人最多?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义max{{x,y}= ,设f(x)=max{ax﹣a,﹣logax}(x∈R+ , a>0,a≠1).若a= ,则f(2)+f( )=;若a>1,则不等式f(x)≥2的解集是

查看答案和解析>>

同步练习册答案