精英家教网 > 高中数学 > 题目详情
如图,△ABO三边上的点C、D、E都在⊙O上,已知AB∥DE,AC=CB.
(l)求证:直线AB是⊙O的切线;
(2)若AD=2,且tan∠ACD=
1
2
,求⊙O的半径r的长.
考点:与圆有关的比例线段
专题:立体几何
分析:(1)如图所示,连接OC.由AB∥DE,可得
OA
OD
=
OB
OE
,由于OD=OE,可得OA=OB.由于AC=CB,可得OC⊥AB.即可得出直线AB是EO的切线.
(2)延长AO交⊙O于点F,连接CF.由(1)可得∠ACD=∠F.由tan∠ACD=
1
2
,可得tan∠F=
1
2
.由于△ACD∽△AFC,可得
CD
CF
=
AD
AC
=
1
2
,再利用切割线定理可得:AC2=AD•(AD+2r),即可得出.
解答: (1)证明:如图所示,连接OC.
∵AB∥DE,∴
OA
OD
=
OB
OE
,∵OD=OE,∴OA=OB.∵AC=CB,∴OC⊥AB.∴直线AB是EO的切线.
(2)解:延长AO交⊙O于点F,连接CF.由(1)可得∠ACD=∠F.
∵tan∠ACD=
1
2
,∴tan∠F=
1
2

∵△ACD∽△AFC,
CD
CF
=
AD
AC
=
1
2

而AD=2,∴AC=4.
由切割线定理可得:AC2=AD•(AD+2r),
∴42=2×(2+2r),解得r=3.
点评:本题考查了圆的切线的性质、切割线定理、相似三角形的性质、平行线分线段成比例定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在空间直角坐标系中,有棱长为a的正方体ABCD-A1B1C1D1,点M是线段DC1上的动点,则点M到直线AD1距离的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
4
+y2=1的左、右焦点分别为F1,F2,M为椭圆上异于长轴端点的一点,∠F1MF2=2θ,△MF1F2的内心为I,
则|MI|cosθ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x+
1
x
,x∈[-2,-1]
x-
1
x
,x∈[
1
2
,2]
,则f(x)的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
sinα-3cosα
sinα+cosα
=-
5
3
,求sin2α+sinαcosα+2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>0,b>0)的离心率为
1
2
,直线x=2被椭圆E截得的弦长为6,设F的椭圆E的右焦点,A为椭圆E的左顶点.
(1)求椭圆E的方程;
(2)求过点A、F,并且与椭圆的E右准线l相切的圆的方程;
(3)若M为椭圆E的右准线l上一点,连结AM交椭圆于点P,求
PM
AP
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C,D是函数y=sin(ωx+φ)一个周期内的图象上的四个点,如图所示,A(-
π
6
,0),B为y轴上的点,C为图象上的最低点,E为该函数图象的一个对称中心,B与D关于点E对称,
CD
在△轴上的投影为
π
12
,则ω,φ的值为(  )
A、ω=
1
2
,φ=
π
3
B、ω=
1
2
,φ=
π
6
C、ω=2,φ=
π
6
D、ω=2,φ=
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ex-e2x+a,
(1)求f(x)的单调区间;
(2)若f(x)=0有两个不同解,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(x2+2)lnx,g(x)=2x2+ax,a∈R
(1)证明:f(x)是(0,+∞)上的增函数;
(2)设F(x)=f(x)-g(x),当x∈[1,+∞)时,F(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案