精英家教网 > 高中数学 > 题目详情
19.在平面直角坐标系xoy中,椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,直线y=x被椭圆C截得的弦长为$\frac{{4\sqrt{10}}}{5}$.
(1)求椭圆C的方程;
(2)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆$\frac{π}{2}$的顶点).点D在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点.求△OMN面积的最大值.

分析 (1)由椭圆离心率可得a,b的关系,联立直线方程和椭圆方程,结合直线y=x被椭圆C截得的弦长为$\frac{{4\sqrt{10}}}{5}$求得a,b的值,则椭圆方程可求;
(2)设A(x1,y1),D(x2,y2),则B(-x1,-y1),可得${k_{AD}}=-\frac{x_1}{y_1}$,设直线AD的方程为y=kx+m,联立$\left\{\begin{array}{l}y=kx+m\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$,消去y得(1+4k2)x2+8kmx+4m2-4=0.求出BD所在直线的斜率,得到BD的方程,分别求出M,N的坐标,代入三角形面积公式,利用基本不等式求得最值.

解答 解:(1)由题意知,$\frac{c}{a}=\frac{{\sqrt{{a^2}-{b^2}}}}{a}=\frac{{\sqrt{3}}}{2}$,可得a2=4b2
联立$\left\{\begin{array}{l}{x^2}+4{y^2}={a^2}\\ y=x\end{array}\right.$,得$x=±\frac{{\sqrt{5}}}{5}a$,
∴$|{AB}|=\sqrt{1+1}\frac{{2\sqrt{5}a}}{5}=\frac{{4\sqrt{10}}}{5}$,解得a=2.
∴椭圆方程为$\frac{x^2}{4}+{y^2}=1$;
(2)设A(x1,y1),D(x2,y2),则B(-x1,-y1),
∴${k_{AB}}=\frac{y_1}{x_1}$,且AB⊥AD,则${k_{AD}}=-\frac{x_1}{y_1}$,
设直线AD的方程为y=kx+m,由题意知k≠0,m≠0,
联立$\left\{\begin{array}{l}y=kx+m\\ \frac{x^2}{4}+{y^2}=1\end{array}\right.$,消去y得(1+4k2)x2+8kmx+4m2-4=0.
∴${x_1}+{x_2}=-\frac{8mk}{{1+4{k^2}}}$,${y_1}+{y_2}=k({x_1}+{x_2})+2m=\frac{2m}{{1+4{k^2}}}$,
∴${k_{BD}}=\frac{{{y_1}+{y_2}}}{{{x_1}+{x_2}}}=-\frac{1}{4k}=\frac{y_1}{{4{x_1}}}$,
∴直线BD的方程为$y+{y_1}=\frac{y_1}{{4{x_1}}}(x+{x_1})$,
令y=0,得x=3x1,即M(3x1,0).
令x=0,得$y=-\frac{3}{4}{y_1}$,即M(3x1,0).
∴${S_{△OMN}}=\frac{1}{2}×3|{x_1}|×\frac{3}{4}|{y_1}|=\frac{9}{8}|{x_1}||{y_1}|$.
又∵$|{x_1}||{y_1}|≤\frac{{{x_1}^2}}{4}+{y_1}^2=1$,当且仅当$\frac{{|{x_1}|}}{2}=|{y_1}|=\frac{{\sqrt{2}}}{2}$时,等号成立.
∴△OMN面积的最大值为$\frac{9}{8}$.

点评 本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,训练了利用基本不等式求最值,体现了“设而不求”的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆短轴的两个端点和两个焦点所组成的四边形为正方形,且椭圆过点(-1,$\frac{\sqrt{2}}{2}$).
(1)求椭圆的方程;
(2)直线l过点P(0,2)且与椭圆相交于A、B两点,当△AOB面积取得最大值时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线2mx-(m2+1)y-m=0倾斜角的取值范围是(  )
A.[0,π)B.[0,$\frac{π}{4}$]C.[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π)D.[0,$\frac{π}{4}$]∪($\frac{π}{2}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=log2(2cosx-$\sqrt{3}$)的定义域为(  )
A.[-$\frac{π}{6}$,$\frac{π}{6}$]B.[2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{6}$](k∈Z)
C.[2kπ-30°,2kπ+30°](k∈Z)D.(2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{6}$)((k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数中,在定义域内是单调递增函数的是(  )
A.y=|x|B.$y=-\frac{1}{x}$C.y=2-xD.y=x3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知圆O的半径为3,圆O的一条弦AB长为4,点P为圆上一点,则$\overrightarrow{AB}•\overrightarrow{AP}$的最大值为(  )
A.16B.20C.24D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a,b表示两条不同直线,α,β表示两个不重合的平面,则给出下列四个命题中正确的个数为(  )
①若α∥β,a?α,b?β,则a∥b.②若a∥b,a?α,b?β,则α∥β.
③若α∥β,a?α,则a∥β.④若a∥α,a∥β,则α∥β.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=4lnx+ax2+bx(a,b∈R),f′(x)是 f(x)的导函数,且1和4分别是f(x)的两个极值点.
(Ⅰ)求f(x)的单调减区间;
(Ⅱ)若对于?x1∈[1,e],?x2∈[1,e],使得f(x1)+λ[f′(x2)+5]<0成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在扇形AOB中,$\widehat{AB}$的长为π,半径为2,则扇形的内切圆半径为2$\sqrt{2}$-2.

查看答案和解析>>

同步练习册答案