精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,且PA=PD=
2
2
AD,E、F分别为PC、BD的中点.
(1)求证:EF∥平面PAD;
(2)求证:面PAB⊥平面PDC.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:证明题,空间位置关系与距离
分析:(1)连接AC,则F是AC的中点,E为PC 的中点,证明EF∥PA,留言在线与平面平行的判定定理证明EF∥平面PAD;
(2)先证明CD⊥PA,然后证明PA⊥PD.利用直线与平面垂直的判定定理证明PA⊥平面PCD,最后根据面面垂直的判定定理即可得到面PAB⊥面PDC.
解答: 证明:(1)连接AC,由正方形性质可知,AC与BD相交于BD的中点F,F也为AC中点,E为PC中点.
所以在△CPA中,EF∥PA,
又PA?平面PAD,EF?平面PAD,
所以EF∥平面PAD;
(2)平面PAD⊥平面ABCD
平面PAD∩面ABCD=AD⇒CD⊥平面PAD⇒CD⊥PA
正方形ABCD中CD⊥ADPA?平面PADCD?平面ABCD
PA=PD=
2
2
AD
,所以PA2+PD2=AD2
所以△PAD是等腰直角三角形,且∠APD=
π
2
,即PA⊥PD.
因为CD∩PD=D,且CD、PD?面PDC
所以PA⊥面PDC
又PA?面PAB,
所以面PAB⊥面PDC.
点评:本题考查直线与平面垂直的判定,直线与平面平行的判定的应用,考查逻辑推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
AB
=(-4,6,-1),
AC
=(4,3,-2),若|
α
|=1,且
α
AB
α
AC
,则
α
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则x•f(x)>0的解集是(  )
A、{x|-3<x<0,或x>3}
B、{x|x<-3,或0<x<3}
C、{x|x<-3,或x>3}
D、{x|-3<x<0,或0<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,四边形AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)若点D是线段BC的中点,请问在线段AB1是否存在点E,使得DE∥面AA1C1C?若存在,请说明点E的位置,若不存在,请说明理由;
(Ⅲ)(本小问只理科学生做)求二面角C-A1B1-C1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

用an表示正整数n的最大奇因数(如a3=3、a10=5),记数列{an}的前n项的和为Sn,则S64值为(  )
A、342B、1366
C、2014D、5462

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的上、下顶点分别为A1A2,左、右顶点分别为B1,B2为坐标原点,若直线A1B2的斜率为-
1
2
,△A1OB2的斜边上的中线长为
5
2

(1)求椭圆C的方程;
(2)P是椭圆C上异于A1,A2,B1,B2的任一点,直线PA1,PA2分别交x轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

用1,2,3,4四个数字组成可以有重复数字的三位数有(  )个.
A、4B、16C、64D、256

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点F是抛物线y2=8x的焦点,两曲线的一个公共点为P,且|PF|=5,则双曲线的渐近线方程为(  )
A、y=±
1
2
x
B、y=±2x
C、y=±
3
3
x
D、y=±
3
x

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各组函数中为同一函数的是(  )
A、y=(
x
2与y=
x2
B、y=|x|与y=
x,(x>0)
-x,(x≤0)
C、f(x)=
x+1
x-1
与g(x)=
x2-1
D、y=x与y=a logax

查看答案和解析>>

同步练习册答案