精英家教网 > 高中数学 > 题目详情
已知数列{xn},{yn}满足x1=x2=1,y1=y2=2,并且
xn+1
xn
xn
xn-1
yn+1
yn
≥λ
yn
yn-1
(λ为非零参数,n=2,3,4,…).
(1)若x1,x3,x5成等比数列,求参数λ的值;
(2)当λ>0时,证明
xn+1
yn+1
xn
yn
(n∈N*)
;当λ>1时,证明:
x1-y1
x2-y2
+
x2-y2
x3-y3
+…+
xn-yn
xn+1-yn+1
λ
λ-1
(n∈N*)
分析:(1)根据
x3
x2
x2
x1
把x1=x2=1代入求得x3,同理可求得x43,x56,进而根据等比中项的性质求得λ.
(2)根据根据不等式性质可知有
yn+1
yn
≥λ
yn
yn-1
λ 2
yn-1
yn-2
…≥λ n-1
y2
y1
n-1
xn+1
xn
xn
xn-1
=λ 2
xn-1
xn-2
λ n-1
x2
x1
n-1
进而可得出
xn+1
yn+1
xn
yn
,再看当λ>1时得出
yn+1-xn+1
xn+1
yn-xn
xn
,即
yn+1-xn+1
yn-xn
xn+1
xn
,代入
x1-y1
x2-y2
+
x2-y2
x3-y3
+…+
xn-yn
xn+1-yn+1
,原式得证
解答:(1)解:由已知x1=x2=1,且
x3
x2
x2
x1

∴x3=λ,同理可知x43,x56,若x1、x3、x5成等比数列,则x32=x1x5,即λ26.而λ≠0,解得λ=±1.
(2)证明:(Ⅰ)由已知λ>0,x1=x2=1及y1=y2=2,可得xn>0,yn>0.由不等式的性质,有
yn+1
yn
≥λ
yn
yn-1
λ 2
yn-1
yn-2
…≥
λ n-1
y2
y1
n-1
另一方面,
xn+1
xn
xn
xn-1
=λ 2
xn-1
xn-2
λ n-1
x2
x1
n-1
因此,
yn+1
yn
≥λ n-1
=
xn+1
xn
(n∈N*).故
xn+1
yn+1
xn
yn
(n∈N*).
(Ⅱ)当λ>1时,由(Ⅰ)可知,yn>xn≥1(n∈N*).
又由(Ⅰ)
xn+1
yn+1
xn
yn
(n∈N*),则
yn+1-xn+1
xn+1
yn-xn
xn

从而
yn+1-xn+1
yn-xn
xn+1
xn
(n∈N*).
x1-y1
x2-y2
+
x2-y2
x3-y3
+…+
xn-yn
xn+1-yn+1
=
1-(
1
λ
)
2
1-
1
λ
λ
λ-1
(n∈N*)
点评:本题以数列的递推关系为载体,结合等比数列的等比中项及前n项和的公式,运用不等式的性质及证明等基础知识进行运算和推理论证.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{xn}满足x2=
x1
2
,xn=
1
2
(xn-1+xn-2),n=3,4,….若
lim
n→∞
xn
=2,则x1=(  )
A、
3
2
B、3
C、4
D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{xn}满足x2=
1
2
x1,xn=
1
2
(xn-1+xn-2)(n=3,4,5,…),若
lim
n→∞
xn=2
,则x1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

高斯函数[x]表示不超过x的最大整数,如[-2]=-2,[
2
]=1,已知数列{xn}中,x1=1,xn=xn-1+1+3{[
n-1
5
]-[
n-2
5
]}(n≥2),则x2013=
3219
3219

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉定区一模)在数列{an}中,若存在一个确定的正整数T,对任意n∈N*满足an+T=an,则称{an}是周期数列,T叫做它的周期.已知数列{xn}满足x1=1,x2=a(a≤1),xn+2=|xn+1-xn|,当数列{xn}的周期为3时,则{xn}的前2013项的和S2013=
1342
1342

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•广州一模)已知数列{xn}满足下列条件:x1=a,x2=b,xn+1-(λ+1)xn+λxn-1=0(n∈N*且n≥2),其中a、b为常数,且a<b,λ为非零常数.
(Ⅰ)当λ>0时,证明:xn+1>xn(n∈N*);
(Ⅱ)当|λ|<1时,求
limn→∞
xn

查看答案和解析>>

同步练习册答案